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Abstract—There have been ever-increasing amounts of security
vulnerabilities discovered and reported in recent years. Much
of the information related to these vulnerabilities is currently
available to the public, in the form of rich, textual data (e.g.
vulnerability reports). Many of the state-of-the-art techniques
used today to process such textual data rely on so-called word em-
beddings. As of today, several pre-trained embeddings have been
created, many of which rely on general-purpose training datasets
such as Google News and Wikipedia. More recently, other
domain-specific word embeddings have been created (e.g. in the
context of software development) to cope with terminology and
ambiguity limitations of existing general-purpose embeddings.
The availability of word embeddings for specialised domains is
critical for the effectiveness of domain-specific tasks that rely on
this technique. In this paper, we propose a word embedding for
the cyber security vulnerability domain. We train our embedding
model on multiple, rich and heterogeneous security vulnerability
information sources publicly available on the web. The benefits
of such specialised word embedding are demonstrated through
a qualitative comparison of word similarity and the exemplary
task of matching security professionals to vulnerability discovery
tasks posted to bug bounty programs. We also introduce a new
dataset of words pairs similarity with a human judgement that
can be used as a benchmark. Our experimental results show
that, in the context of cyber security, our domain-specific word
embedding outperforms existing pre-trained embeddings built on
general-purpose and software engineering datasets.

Index Terms—Cyber security vulnerability, word embedding,
representation learning, crowdsourcing, vulnerability discovery

[. INTRODUCTION

With the growing use of Internet-based technologies, sup-
porting an increasingly inter-connected world, the chances of
cyber-attacks and threats have also increased [40]. These may
vary from minor incidents of personal data theft to major
attacks contributing to taking control over entire systems.
For example, in 2016, botnet Mirai launched a large-scale
Distributed Denial of Service (DDoS) attack through infected
Internet of Things (IoT) devices. This attack disabled internet
access to millions of users in the US West Coast!. Similar
events are raising the concerns of organisations regarding
the protection of their assets, which, in turn, is resulting
in a massive amount of security-related information being
generated in the form of reports, security bulletins, advisories,
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standards, among other types of security vulnerability infor-
mation resources.

The unstructured nature of these resources, such as the
textual descriptions of vulnerabilities, opens up big opportu-
nities as well as challenges from an information and knowl-
edge management perspective, as well as from a Natural
Language Processing (NLP) viewpoint. Here, researchers and
practitioners can analyse such information and develop useful
and practical applications to help improve the security of the
systems employed by organisations and businesses in their
day-to-day operations. Examples include detection of DDoS
attacks in cyber security systems [31], intelligent malware
detection [37] and classification [21], and cyberattacks event
detection [19]. Apart from everyday operations, they can
also benefit from the creation of automatic alerts for critical
patches recently released by vendors. This affects the software
infrastructure employed by an organisation. Another example
includes a system that allows software developers and DevOps
to find vulnerability related information (e.g. security advi-
sories) through semantically rich Natural Language Interfaces
(NLIs) [29].

In recent years, much attention has been devoted to the
analysis and representation of unstructured data through neural
network inspired language models (known as embedding mod-
els) [5], [23], [27]. The most common example is that of word
embedding (WE) [23], which aims at representing words in a
Vector Space Model (VSM). WE:s illustrate the latent structure
present in the text such that semantically similar words appear
close to each other in the vector space. In other words, these
word embedding models learn to generate dense, continuous,
low dimensional vector representations of words from raw
corpora in an unsupervised way. Several WE models have
been released over the past years, many of which have been
trained on large corpora such as Wikipedia? and GoogleNews?>.
Arguably, these embeddings have proven useful for general-
purpose NLP tasks [20]. However, they have inherent problems
when it comes to domain-specific tasks. Firstly, they may fall
short in correctly assigning semantics to the terminology that
is specific to the domain [12]. An example demonstrating
this would be: The semantics of the term “dirty cow” in
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cyber security (i.e. “a copy-on-write security vulnerability”)
and the more widely known and colloquial meaning of the
same words (“an unclean and large ungulate mammal”).
Secondly, acronyms such as “XSS” and “CWE-79” (both used
to refer to “cross-site scripting vulnerability”) may not always
be available in general-purpose WEs. The limited ability of
general-purpose WEs in terms of coping with such ambiguities
(“dirty cow”) and lack of specialised terminology (“XSS”) can
become a significant barrier for the effectiveness of security-
related information systems that rely on such embeddings.
Qur Contributions. To address the issues mentioned above, in
this paper, we propose a domain-specific WE for the security
vulnerability domain by utilising multiple, rich and hetero-
geneous sources of security vulnerability information from
the web. To build this embedding, we leverage a word2vec
skip-gram model [23] to capture the semantic relationship
and association between words in this context. We demon-
strate the suitability of our domain-specific WE in three
ways. Foremost by comparing its performance against existing,
pre-trained WEs through a qualitative comparison of word
similarity. Secondly, we generate a word similarity dataset
through crowd/human judgement for this domain to be used
for the evaluation of cyber security tasks. Finally, through
the task of matching security professionals (SecPros) (i.e.
white hat hackers) to bug bounty programs publicly available
on Hackerone*. The results show that our domain-specific,
security vulnerability WE and word similarity dataset achieve
a better performance w.r.t. their counterparts.

The rest of the paper is organized as follows. Section II
describes the step-by-step procedure to training the word
embedding. The experiments, evaluations and a case study
collectively are presented in Section III. Related work is sum-
marized in Section IV, and, in the end, Section V concludes
the paper with future work.

II. LEARNING REPRESENTATION FOR CYBER SECURITY
VULNERABILITIES

Word embedding, also known as a distributed representation
of words [24], is a popular way of representing words in a low-
dimensional vector space. It has the property that words that
share similar context (and semantics) have a close embedding
in the corresponding vector space. This powerful property
has been extensively employed in various domains such as
software engineering [12], experts finding [26] and event type
recognition [38] to develop semantic similarity techniques.
In this section, we provide step-by-step details on how we
leverage state-of-the-art technologies to build such WE for the
cyber security vulnerability domain (shown in Fig. 1). To the
best of our knowledge, this is the first work that studies the
training of WEs for this domain by employing multiple, rich
and heterogeneous security vulnerability datasets, making also
the resulting WE available® to the public.
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A. Collecting the Data

Where does this data/information come from? Informa-
tion related to cyber security vulnerabilities can be collected
from multiple, heterogeneous sources [29]. Such information
typically come in the form of crowd-sourced vulnerability
reports (e.g. Hackerone), vulnerability databases (e.g. National
Vulnerability Database®), expert’s blogs’, security advisories®,
standards (e.g. Common Weakness Enumeration”), vendor’s
patch reports (e.g. Microsoft Security Response Center!?),
security related Q&As (e.g. Stack Exchange Q& As'"), among
other sources. Given that larger amounts of training data typi-
cally produce more accurate WEs [24], we propose to collect
and leverage all these vulnerability information sources to train
our WE. More specifically, in this work, we use Vulners!'? as
our main source of security vulnerability information. Vulners
is a repository that collects vulnerability-related bulletins from
more than 120 different sources (examples of such sources
were listed previously). It contains more than 1.1 million
vulnerability-related bulletins that represent approximately 4
GB of data. Another rich source of information is the English
Wikipedia. We selected the main pages from the security cate-
gory'? and their related pages from ten levels of subcategories.
A total of approximately 6,140 pages were obtained after
removing duplicates. In addition, we complement this dataset
with dumps of the Information Security Stack Exchange
Q& As, Common Weakness Enumeration (CWE) and Stack
Overflow (SO) (although the latter is not strictly focused
on security vulnerabilities, it contains useful security- and
vulnerability-related discussions in the form of Q& As).

B. Data Pre-Processing and Cleaning

The data pre-processing and cleaning step involves remov-
ing HTML tags and processing JSON documents to extract
textual data (e.g. Vulners’ dataset consists mainly of JSON
documents). We also apply standard text pre-processing tech-
niques such as converting the whole corpus into lowercase
and tokenisation. Special characters and punctuation are also
removed to retain only words. Furthermore, we filter out stop
words (e.g. articles and prepositions), which typically consists
of extremely common words that do not contribute much to
the semantics of the key concepts and terminologies in this
domain.

C. Phrases Extraction

Following data cleaning, the next step is to extract mean-
ingful phrases [24] from the data. It is worth noting that in the
domain of cyber security vulnerabilities, most of the words are
in the form of phrases and have a meaning that is not simply
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Fig. 1. Overall Process for training security vulnerability word embeddings and using them for matching vulnerability discovery tasks to SecPros.

the sum of the meanings of its constituent words. For instance,
SQL Injection is a meaningful phrase that as a whole represent
a single concept (it is a type of vulnerability). Thus, having
an embedding for the whole phrase is more useful in this
domain than having separate embeddings for each individual,
constituent word. Such phrases can be identified by using
techniques such as data-driven [24] and scoring functions [7].
In our work, we identify these phrases using a scoring function
approach called Normalized Pointwise Mutual Information
(NPMI) [7], in which phrases are formed based on the strength
of association between words in a phrase. The association
between two cyber security words ¢ and j can be defined as
follow: PGi)
log 5t PGy

~og(P(i.5)

where P(i, j) refers to the joint probability of word 7 occurring
with word j in a dataset within a fixed context windows
size. Similarly, P(i) and P(j) indicates the probability of
independent occurrences of a word ¢ and j, respectively in
the dataset. Based on this formulation, if two words co-occur
more frequently together than they do independently, the score
will be positive and vice versa. Hence, SQL Injection can be
represented as a single token, i.e. SQL_Injection, and will be
treated as an individual token during training. By extension,
this process can be applied to any n-gram (e.g. 3-grams in this

NPMI(i,j) =

work) that has been observed a significant number of times
(e.g. 100 times in our case). The resulting dataset consisting
of approximately 1 billion unique words and phrases' is then
represented in an embedding space as explained next.

D. Security Vulnerability Word Embeddings Learning

Our work leverages on state-of-the-art algorithms widely
used in NLP communities. Several such algorithms (e.g.
word2vec [23] and Glove [27]) come with efficient imple-
mentations that are readily available as libraries for popular
programming languages. In this work, we adopt word2vec
[23], which comes in two variants, namely, Continuous Bag-
of-Words (CBOW) and Skip-Gram. More specifically, we
leverage the Skip-gram model, which can be trained on rich,
heterogeneous data to predict the context word w, given a
target word w; in a certain sliding window and map words
onto a vector space. More formally, given a word sequence
D = (wy,ws....w,), it focuses on maximising the proba-
bility of a context word given a target word, which can be
represented as follows:

P(wif(nwichrl»u-ywifl,wi+17~-~7wi+cflvwifc|wi)

We experimented with different configurations settings to
determine the hyperparameters of the model for the training

4Note that a phrase is considered as a word token during the training
process. We therefore refer to both word and phrase as a ‘word’.



process. After experimentation, we opt for a vector size of 150.
This determines the dimensionality of the embedding space
and produces more accurate results in terms of word vectors
accuracy and similarity lookup. For medium-sized datasets
(like ours), a higher dimension size can produce the same
result at the cost of more resources usage and training time
[23], [24]. In addition, we use a context sliding window set to
5, with the minimum frequency of words (in the dataset) of 20.
Furthermore, a negative sampling of 10 helps in determining
better prediction result [36], [39]. Upon several iterations of
training, the neural embedding produces a set of word vectors
that can support a variety of mapping functions (such as cosine
similarity [22] and euclidean distance [9]). We make the word
embedding (SecVuln) available to practitioners and researchers
as a Web service (REST API), which can be accessed from
http://secvul.ap.ngrok.io/api/.

III. EXPERIMENTS

This section provides the performance evaluation of our
learned representation of cyber security word and phrases
through a set of experiments. We first evaluate the quality
of our word embedding against state-of-the-art pre-trained
embeddings using the standard words similarity task. We then
describe the steps for the construction of new word similarity
dataset along with its evaluation with human judgement.
Finally, we present an exemplary task of security professional
selection for bug bounty programs.

A. Evaluation

Words Similarity. For evaluating our word embedding as
compared to existing pre-trained embeddings, we provided
examples of similar words as emerging from the corresponding
vector space. We randomly collected words from the cyber
security domain'® and using both our WE and the pre-
trained ones, we map the collected words to vectors in the
corresponding vector spaces and then obtained the nearest
words based on cosine similarity [24]. Table I shows the list of
top-similar words retrieved for the collected words as obtained
from our WE and publicly available state-of-the-art WEs based
on GoogleNews'® and Stack Overflow [12]. The similar words
returned by our WE reflect a good coherence in contrast with
the other two WEs. As an example, for the input keyword
virus, the similar words returned by our WE include trojan
and worm (which are types of malware), while SO WE returns
words such as mcafee and avast (which are rather products
used as anti-viruses). GoogleNews WE, instead, returns more
general words and outside the domain and interest of cyber
security vulnerabilities (such as flu_virus and bird_flu_virus).
In some cases, similar words produced by our WE conform
to SO WE. This is expected given that SO WE is trained on a
dataset coming from a close domain (software development)
where security issues are also discussed (although to a much
lesser extent w.r.t. our domain-specific datasets). Finally, the

I5https://niccs.us-cert.gov/about-niccs/glossary
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ranking and similarity scores (relevance) produced by our WE
are higher than those produced by SO WE.

Dataset Construction: Word Similarity dataset in the context
of Cyber Security Domain. One of the most common
approaches for assessing the quality of word embeddings is to
evaluate how well the similarity scores of the word vectors cor-
relate with human judgement [33]. Several similarity datasets
exist, including WordSim-353 [15] and Stanford’s Contextual
Word Similarity (SCWS) [17], which serve as benchmarks for
analysing the performance of WEs. However, they are general-
purpose datasets and may carry different word senses (e.g.
Python, sniffing) in other domains [34]. Additionally, there is
no such words similarity dataset available in the domain of
cyber security that can help in improving the performance of
NLP and information retrieval tasks in this domain [35]. This
encourages us to build domain-specific, word similarity dataset
based on multiple and rich sources from cyber security as a
benchmark for this community. One of the main contributions
of our work is thus the construction of new words similarity
dataset built on the top of our embedding (SecVuln). The
construction method will be described in detail next.
Construction Steps. What kinds of words should be in-
cluded in the word similarity dataset? We use two different
approaches for words selection: Popularity and Importance.
The overall goal is to select a diversified list of words and
phrases. (i) Popularity refers to a selection of words based on
their frequencies and occurrences in a dataset. By following
the settings in [17] for popular words selection, we divide
them into three groups: Top 2000, between 2000 and 5000, and
between 5000 and 10000 words based on their frequency in
a dataset. However, unlike their approach, we do not consider
parts of speech (e.g. verbs and nouns) for selection as we
consider them irrelevant in our domain. Instead, we focus
on the importance of words in the dataset: For example,
in the domain of cyber security vulnerability, some of the
words might not be frequent but still important (e.g. fuzzing).
We use the well-known TF-IDF score [8] for computing the
importance of words to create a group of important words.

We select a sample of 50 words from each of the popular
three groups mentioned above alongwith 50 words from the
important words group. This results in a combined list L of
approximately 200 words. If a word appears more than once
in L, we keep one occurrence and select the next one.

Next, we focus on the normalization of the selected words:
We apply words lemmatization using WordNet [25] to convert
the selected words into its base form (such as exploited to
exploit and viruses to virus). It is worth noting that some
of the technical words are not available in general-purpose
WordNet [25] database, as expected, so we convert them to
their original form (e.g. pen testing is converted to penetration
testing) with the help of open Wikipedia search and NIST
standard terminologies'’. This step is done to improve the
precision and accuracy of our dataset.

Thttps://csre.nist.gov/glossary?index=P



TABLE I
Li1ST OF TOP-5 MOST SIMILAR WORDS RETURNED BY DIFFERENT WORD EMBEDDINGS

Keyword SecVuln WE Stack Overflow WE Google News WE
virus malware, infected, antivirus, trojan, worm malware, antivirus, spyware, mcafee, avast flu_virus, bird_flu_virus, influenza_ virus,
swine_flue_virus, infection
bot botnet, googlebots, spam, spammer, crawler | chatbot, slackbot, telegram, wechat, botfa- | botnet, robot, worm, koobface, trojan
ther

sniffing sniff, eavesdropping, sniffed, capturing, | sniff, spoofing, sniffers, man-in-the-middle, sniff, smelling, snuffling, chewing, sniffers
sniffer snooping

exploit vulnerability, vulnerable, targets, bug, ex- | exploiting, exploitable, thwart, subvert, | exploiting, capitalize, exploitable, expose,
ploitation abuse utilize

metasploit msf, metasploit_framework, msfconsole, | w3af, xposed, configure, module-starter, | Not in vocabulary
copypasta, db_nmap pkgsrc

The next challenge consists in obtaining the second word

(for each of the words previously obtained) for building word
pairs for the dataset. In order to achieve this, we exploit our
word embedding (SecVuln) and compute top & similar words
for each word in the list L via cosine similarity [18]. These top
k similar words serve as the second word in word pairs. For
example, the top similar words for ‘steal’ are: (gain_access,
theft, hijack, grab, hack, impersonate, compromise). Here, it
should be noted that the same normalisation technique used
before is applied the second word of the word pair. Addi-
tionally, word pairs consisting of same words with different
order (e.g. < wirus,worm > and < worm,virus >) are
also filtered out. After filtration, this step generated a list L'
of approximately 2000-word pairs.
Validation through a Crowd. We now turn to the problem of
validating the similarity dataset constructed in the previous
step. Here, we focus on evaluating how well the word pairs
above agree with human judgements. We validate our words
pairs similarity dataset through a cyber-security-aware crowd
[17]. In order to do so, we have created a crowdsourcing task
and conducted a user study (in-line with UNSW Sydney’s
ethics approval and guideline). We used a web-based survey
tool ‘Qualtrics’!® to collect participants’ opinion. In this study,
we ask participants (either enrolled in cyber security courses
(i.e. students) or a member of cyber security groups (i.e.
professionals)) to annotate our word pairs based on their
similarity. For each word pair, they have to select the similarity
relationship between words in a pair using a Likert scale from
0 to 3 as follows: 0 — not related at all, 1 — weakly related,
2 — related, and 3 — strongly related.

As discussed above, to ensure the quality of these annota-
tions, we engaged only participants with cyber security knowl-
edge and background. Moreover, considering prior work [32],
which has shown that for any labelling task, given good quality
contributors (as in our case: knowledgeable students), three
participants opinion suffice to get reliable results. Therefore,
we also target three independent participants annotations for
each task. To be more precise, we divide the total number of
word pairs into several tasks, where each task consists of fifty-
word pairs. Thus, the 2000-word pairs result in forty tasks (i.e.

18https://research.unsw.edu.au/qualtrics

2000/50=40), which must be completed by approximately 120
participants (i.e. 40%*3=120).

Upon the completion of this study, we aggregate the feed-
back from the participants by majority votes. For weakly
related words, if two-third of participants’ ratings agreed with
each other, we keep that word pair; otherwise, it is discarded
from the list. On average, the participants rated 35.5% as
strongly related, 30.5% related, 25.8% weakly related and
8.1% are not related at all. Table II shows a sample of words
pairs accepted or rejected by the participants for a given
word. The resulting words similarity dataset is available to
the public'®.

TABLE I
A SAMPLE OF PARTICIPANTS’ RATINGS

Keyword Accepted Words as Word Pair Rejected Word(s)

vulnerability | bug, flaw, exploit, risk, threat possibility, fact

snooping eavesdropping, sniffing, mitm, | communication
spoofing

backporting patches, upstream, improvements, | stable, rolled
releases

Results. This step evaluates how well the word pairs in
word similarity data agree with human judgements. For our
preliminary investigation, we take a sample of 200-word pairs
annotated by users on a Likert Scale, as mentioned in the
previous step. Following SCWS dataset evaluation [17], we
also compute the Spearman’s rank correlation between our
word embedding similarity score and users annotations. The
higher the number, the stronger the correlations. The score
obtained (r; = 0.62) indicates that our WE similarity score
and the human ratings/score strongly correlated and well
agreed with human judgement [17].

Case Study. To show the quality of our learned embeddings,
we also conducted a case study for task-to-SecPros match-
ing in crowdsourced vulnerability discovery programs (bug
bounty programs). Organizations have relied on crowdsourc-
ing vulnerability discovery for finding vulnerabilities in their
software/products. One of the challenges associated with this
approach is the identification of experts within the crowd in
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order to invite them to participate in the crowdsourced task
of vulnerability discovery [1]. In this context, given a vulner-
ability discovery task 7', the goal is to find a set of SecPros
U with appropriate required skills and knowledge to fulfill
task T'. Here, the aim is to derive a suitable representation
of SecPros expertise and tasks in a vector space (similar to
how words are represented in a WE) in order to facilitate the
matching of SecPros to tasks. To do so, we leverage on textual
contents (i.e. vulnerability reports submitted by SecPros) and
consider it as an indicator of SecPros expertise and represent
them in a vector space. The detailed description of this process
is as follows (see the right-most column in Fig. 1)

Report Collection. We collect publicly available reports
of each SecPro participating in Hackerone?®, a popular and
specialized bug bounty platform. Approximately 5000 publicly
available reports are collected. We group such reports by
SecPros to use their contents as the basis to represent SecPros’
expertise. It should be noted that SecPros with at least one
accepted report are selected for experiments to filter out
low quality SecPros. Thus, the resulting dataset consists of
approximately 1500 SecPros.

Extraction. Next, we decompose the titles of reports into
meaningful keywords (kq, ko...k,) with the help of a part-
of-speech tagger®'.

SecPros Embedding. Following keywords extraction, the next
step is to represent these keywords in an embeddings space to
be used later for matching. More precisely, for the computation
of the vector representation of SecPros expertise U, we
leverage upon our trained WE and obtain word vector v,, for
each word w in a report title. Since titles are short and vary
in length, we apply a simple yet powerful technique of vector
averaging [11] [26] to obtain a vector representation for each
report of SecPros. That is,

i=1

where R_m> is the vector representation of SecPro u;’s report
m, and n is the number of words in his/her report title.
This computation is repeated for each report and a vector
representation for SecPro ﬁ is obtained by averaging the
reports vectors 2.

Task Embedding. For a given task T', we repeat the same rep-
resentation process used for SecPros embedding. We extract
keywords to represent them based on our WE, and use vector
averaging to generate a vector for a task. The keywords,
in this case, are the in-scope vulnerabilities from the task
description.

Similarity Computation. This vector representation allows us
to use vector-based distance measure (e.g. cosine similarity)
to compute the similarity between a task ? and SecPros U.
The closer the value of similarity to 1, the higher the relevancy
of a task with the SecPros’ expertise. This results in a ranked
list of SecPros in a decreasing order of their relevance.

20https://hackerone.com/hacktivity
2 https://nlp.stanford.edu/software/tagger.shtml

Evaluation. For evaluation purposes, we use SecPros listed in
HackerOne’s leader-board®? as a gold standard. The quality
of the resulting list of SecPros is evaluated via precision@N
[41], which measures the number of relevant SecPros that are
returned by our method found with the top N results. Thus,
if a SecPro belongs to our gold standard list, the result is
1. Otherwise, the result comes as 0. The results in term of
finding relevant SecPros are given in Table III. The precision
when using our WE is consistently better at P@5 and P@10
w.r.t. SO WE, with an improvement of 8% in terms of Mean
Averaged Precision (MAP). It should be noted that we are
not making any judgement on the matching algorithm itself.
We rather focus on a performance comparison based on the
WE employed. These findings show that our domain-specific
WE has the capability to capture better the terminology and
semantics used in the cyber security vulnerability domain.

TABLE III
CASE STUDY: TASK-TO-SECPROS MATCHING
Embeddings | P@5 | P@10 | MAP
SO WE 0.33 0.45 0.50
SecVuln WE | 0.52 0.55 0.58

B. Model Applications

In this paper, we developed a domain specific WE targeting
the cyber security vulnerability domain. Three exemplary
applications of our WE include query expansion, natural
language interaction and job recommendation.

Query Expansion. The idea of query expansion is to in-
clude additional words/terms to existing queries for improv-
ing search results. Our experiments show that similar words
produced by our WE are more closely related to each other
compared to other WEs. We can use these words to effectively
and semantically expand queries to support the exploration
of vulnerability information. This can prove very useful,
especially for learning purposes. As an example, for a learner
trying to find information about “malware” the query can
be expanded to include “viruses”, “worms”, “trojans”, etc.
This can help learners explore further related terms to have
a wholesome understanding of the security topics.

Natural Language Interaction. Interacting with database by
using natural language queries through virtual assistants (a.k.a
chatbots) is another usage of SecVul embedding model [2]. By
leveraging SecVul WE, stored information (in a database) are
encoded into vectors where each vector is a representation of
a database element (such as a table, column, cell). Equipping
with such vectorial representations, the chatbot can process
users’ NL queries even if they do not follow the underlying
database schema [6], [14], [16]. For example, to query a
database column named “patch”, a user can also use alternative
words such as “fix” or “update” in his NL query.

22https://hackerone.com/leaderboard/all-time



Job Recommendation. The demand for SecPros is rising as
the incidences of security breaches increase [28]. However,
the cyber security domain is currently facing a problem
of “skill gap”, i.e. a mismatch between the skills required
by employers and the ones SecPros actually possess [10].
Effective representation of skills (e.g. based on factual data
such as reports submitted to bug bounty programs) and jobs
in an embedding space can help mitigate this problem. Our
WE can be extended to include job descriptions and resumes
of SecPros. The learned vectors and co-occurrences of skills
can then be used for a job recommendation.

Beyond the positive results obtained in this work and
possible application scenarios of our WE, we believe that there
is still enough space for improvement. For example, there is
an opportunity to improve the current WE by collecting and
adding more data, including security vulnerability research
papers, Github®® repositories, Reddit>* forums, getting started
guides?, among other sources. Another alternative is to lever-
age on recent embedding technologies to represent higher level
concepts such as entity and relationship that can better capture
the relatedness of concepts in the cyber security domain [14].
Work in this direction can potentially facilitate tasks such as
data integration and knowledge graph construction within the
cyber security domain.

IV. RELATED WORK

Learning Representation for Cyber Security. The concept
of learning representation from data using neural networks
has been employed extensively in several machine learning
tasks such as natural language processing [3]. Recently, these
models have been widely adopted in cyber security applica-
tions [35] [4]. Different deep learning techniques and advanced
representation models are quickly becoming popular in the
cyber security domain. For example, authors in [31] proposed
an artificial neural network-based technique to separate the
traffic of DDoS from the real traffic in the network. Similarly,
DeepAM, a deep learning framework, is presented in [37] to
detect malware in network traffic intelligently. These efforts
are made to help organizations and businesses in managing
the security and protection of their systems. However, un-
like these efforts, our work is mainly focusing on providing
building blocks (i.e. word embeddings) to the above men-
tioned techniques. In this context, such techniques typically
take pre-trained vectors of a fixed length as input. Their
performance therefore rely on the underlying representation
of words or textual corpus. While general pre-trained word
vectors trained on Wikipedia or GoogleNews datasets are
publicly available, for domain-specific tasks such as intrusion
or malware detection, the accuracy of the approaches relying
on them may decrease with the usage of general-purpose
embeddings. A closely related work [30] from the literature
trained an embedding model on sparse vulnerability-related

Zhttps://github.com

Zhttps://www.reddit.com

Zhttps://forum.bugcrowd.com/t/researcher-resources-how-to-become-a-
bug-bounty-hunter/1102

text coming from two datasets. Unlike their work, our SecVul
WE is built on multiple, heterogeneous data sources and gives
a diverse and rich representation of words in the cyber security
vulnerability domain.

Words Similarity Dataset. Measuring the similarity of reports
and artifacts (e.g. detection of duplicate vulnerability discovery
reports) is one of the key tasks in the cyber security vulnera-
bility domain. There are numerous available similarity datasets
annotated by humans that help in improving the performance
of these similarity-based tasks. One of such datasets is the
general-purpose lexical database called WordNet [25]. Word
Sim353 [15] and SCWS [17] are also human labelled datasets
widely used to serve the same purpose. However, when it
comes to domain-specific terminologies and word represen-
tations, they may not suffice in representing the given context
of the domain and may lead to ambiguity of words. It may
carry different meanings in the context of cyber security and
general-purpose dataset. The software engineering community
has addressed this problem by introducing word similarity
datasets [34] based on Stack Overflow, one of the largest
software engineering question answering community. While
the software engineering community dataset can work better
compared to the general-purpose dataset as shown in Table
I, it may not properly fit for domain-specific tasks such as
the ones discussed in this paper. Our work introduces such
dataset for the cyber security domain to help both researchers
and practitioners overcome this limitation.

V. CONCLUSION

In this work, we propose a domain-specific word embedding
for the cyber security vulnerability domain by utilizing tex-
tual data from multiple, heterogenous sources and leveraging
on state-of-the-art Natural Language Processing embeddings
technology. The experimental results indicate that the proposed
word embedding outperforms the state-of-the-art, pre-trained
ones in security vulnerability related tasks. Here, not only
our word embedding is able to obtain a better coverage for
domain-specific terminology but it also helps with mitigat-
ing the ambiguities that emerge from general purpose word
embeddings. Our work can thus contribute as a key building
block for more advanced techniques that can benefit from
distributed representation of words in the context of cyber
security vulnerabilities, including supervised learning, natural
language interaction, query expansion, job recommendation,
among other tasks. We make our word embedding publicly
available for community reuse.

This research is part of a larger and ambitious goal of
creating robust embeddings for cyber security and cyber threat
intelligence artifacts to support security experts and organiza-
tions in keeping their software systems safe. Directions for
future work within this line include the enrichment of existing
data with Knowledge Graphs [13], the creation of a taxonomy
of skills to support skills representations within this domain
and the exploration of recent advances in cognitive databases
[6], [16] and their possible applications to the cyber security
domain.
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