
API Topics Issues in Stack Overflow Q&As Posts:
An Empirical Study

George Ajam
College of Information Technology

University of Babylon
Babylon, Iraq

george@itnet.uobabylon.edu.iq

Carlos Rodrı́guez
Departamento de Electrónica e Informática

Universidad Católica “Nuestra Señora de la Asunción”
Asunción, Paraguay

carlos.rodriguez@uc.edu.py

Boualem Benatallah
School of Computer Science and Engineering

UNSW Sydney
Sydney, Australia

b.benatallah@unsw.edu.au

Abstract—Application Programming Interfaces (APIs) have

become one of the key assets within modern businesses, facilitat-

ing the linking and integration of intra- and inter-organizational

data and systems in the context of complex and heterogeneous

technology ecosystems. APIs allow organizations to monetize

data, build profitable partnerships and foster innovation and

growth. Understanding APIs and their usage are therefore key

to building solutions for enabling successful business operations.

This paper aims at understanding API topic issues posted on

Stack Overflow (SO), a Community Question Answering (CQA)

site for programmers. We conduct an empirical analysis on a

sample of 400 randomly-selected Q&As threads to help identify

API-related issues and their main topics. A thematic analysis

performed on this sample reveals eight main topics related to

APIs, among which API usage, debugging, API constraints and

API security emerged as the major ones. We also exemplify the

types of support provided by SO community in addressing each

of the identified topics and discuss possible venues on how to

further leverage this knowledge.

Index Terms—API topic issues, Stack Overflow, Empirical

Study

I. INTRODUCTION

APIs allow developers to reuse software components in
the context of software development. An API can be seen
as a contract between a provider and consumer of a given
functionality [1]. With the rapid growth of APIs and their
ever increasing relevance in the support of business operations
and integration1, APIs have become an essential and critical
component for software development2. Besides enabling the
reuse of existing software components, APIs facilitate the
exchange of inter- and intra-organizational data, e.g., made
available through specific endpoints in the context of web APIs
[2], [3]. Furthermore, APIs are regarded now, more than ever,
as a key enabler for new and exciting developments, including
Blockchain technologies [4], Internet of Things (IoT) [5] and
Cognitive Services [6]–[10].

1https://www.mulesoft.com/resources/api/connected-business-strategy
2https://www.programmableweb.com/news/programmableweb-api-

directory-eclipses-17000-api-economy-continues-surge/research/2017/03/13

Different resources help developers learn about APIs. For
instance, developers may resort to official reference docu-
mentation [11], getting-starting guides3, developers Q&As4,
mailing lists [12], blog posts [13], among other resources.
While these resources provide a valuable help to developers
dealing with APIs in their daily tasks, not much is actually
known and understood about the various API topic issues
addressed in such resources. Some attempts to understand
topics discussed within these resources (although not neces-
sarily focused on APIs) include the identification of question
types within the Q&As of SO [14], the investigation of API
security topics posted on GitHub open-source repositories
[15], and topics and trends in developer discussions on SO
[16]. The identification of API topic issues is key to support
the management, exploration and understanding of APIs, the
summarisation of key concepts, the discovery of significant
topics, among other activities [17].

In this paper, we propose to empirically analyse knowledge
related to API topic issues in SO, a widely used programming
CQA that is nowadays considered an indispensable resource
for facilitating the usage and understanding of APIs [18]. More
specifically, we aim to address the following reseach question:
What are the main API topic issues in SO’s Q&A posts?
By answering this question, the ultimate goal of our study
is to provide insights into topic issues addressed in SO that
are unique to APIs. Such insights can help shed light into
understanding the main problem areas faced in the usage of
APIs, limitations found in API documentation, issues in the
design of interfaces, among other aspects relevant to APIs that
can affect software development.

The rest of this paper is organized as follows. Section
2 provides background information on the management and
quality of API documentation. Section 3 outlines the data
collection and analysis techniques employed in our study.

3https://developers.facebook.com/docs/pages/getting-started/
4https://stackoverflow.com

© 2020 IEEE
G. Ajam, C. Rodriguez, B. Benatallah. “API Topics Issues in Stack Overflow Q&As Posts: An Empirical Study”, The XLVI Latin American 
Computing Conference - CLEI 2020, Loja, Ecuador



Next, Section 4 summarises the findings of our study. Section
5 discusses the implications of our findings and limitations
of our study. We close this paper with Section 6 where we
present our concluding remarks.

II. BACKGROUND AND RELATED WORK

APIs have become one of the key assets within modern busi-
nesses, facilitating the linking and integration of organizations
and technology ecosystems. APIs allow organizations to mon-
etize data, build profitable partnerships and foster innovation
and growth.5 The quality of APIs and effective managament
of API documentation are therefore key dimensions that need
to be considered for a successful business strategy enabled and
fueled by APIs. In this section, we explore the literature and
research efforts along these two lines of research.

Effective management of API documentation. The man-
agement of API documention can be grouped into three
categories: (i) API documentation improvement, (ii) API doc-
umentation production, and (iii) API documentation problems
handling. In the first category, research works focus on rec-
ommendation and examples of projects and code, including
approaches such as Exemplar [19], PropER-Doc [20] and
APIMiner [21]. Works along this line typically aim at aug-
menting existing API documentation for improvement. API
documentation production, instead, typically focuses on iden-
tifying and producing useful API documentation by leveraging
on existing code repositories. Works on this front include the
automatic generation of code fragments [22], identification of
reusable classes and methods [23], and mining and summari-
sation of code examples for API usage. In the context of API
documentation problems handling, researchers focus on issues
and failures in API documentation. Work done in this area
includes the identification of API documentation problems cat-
egories [24], evolution of API documentation, communication
and versioning [25], and undocumented exceptions [26].

Quality of API documentation. The quality of API docu-
mentation have been explored in the literature along a number
of dimensions. We discuss related work under the dimensions
of (i) completeness, (ii) understandability, (iii) maintainability,
(iv) consistency and (v) correctness.

To improve completeness of API documentation, studies
investigated tooling to provide examples of API usage such
as code examples from unit tests (e.g., [27]) and Java code
examples (e.g., [11]). Research under the understandability
dimension focuses, e.g., on enrichments based on summaries
[28] and insights [29] in the context of Q&As, abstraction
of the semantics of API calls [30], and enhancement of
code examples through code summarisation [21]. While the
efforts in the context of maintainbility explore the evolution
of API documentation during events such as versioning [25],
the involvement of developers during documentation revisions

5https://www.mckinsey.com/business-functions/mckinsey-digital/our-
insights/what-it-really-takes-to-capture-the-value-of-apis

[31], and the enrichment of API documentation with up-to-
date code examples to support its maintability [11].

On the consistency front, efforts focus on detecting and
highlighting API issues and inconsistencies. Work along this
line includes highlighting inconsistency problems in documen-
tation along with possible solutions [32], detecting errors and
inconsistencies in documentations [33], and documentation
style suggestions to avoid consistency issues [34]. Finally,
the correctness dimension focuses on aspects such as bugs
generated due to incorrect documentation [35], and support
for correct API description through machine-generated docu-
mentation [36].

A number of works [16], [37]–[40] have explored the topics
and issues covered in programming CQAs such as SO. Yet, to
the best of our knowledge, this is the first work that focuses on
and qualitatively analyzes API topic issues in the context of
programming CQAs. Thus, our paper complements the works
discussed previously by unveiling API topics/sub-topics issues
that can help understand the main aspects programmers are
concerned with when using APIs.

III. DATA COLLECTION AND ANALYSIS

This section provides details of the data collection and
analysis techniques used for conducting our study. We explain
how we select our data and the methods we follow for
performing the analysis. To analyse the topic issues in SO
Q&As posts, we follow the guidelines presented in [41] to
develop a thematic map of API topic issues. Next, we provide
details on the data collection and the qualitative analysis
process.

A. Data Set
We used SO’s posts and relied on tags that help us identify

API-related posts. The APIs considered in this paper include
not only web APIs, but also software libraries and Software
Development Kits (SDKs). Tags in SO are used to help
categorise Q&As posts [42]. A tag consists of one or more
words that group questions into categories6. A question can be
tagged with no more than five tags in SO7. In this study, we
first investigate whether the tag “API”8 may help categorise all
API-related questions. We found that SO does not encourage
the usage of the tag “API” by itself; instead, it is recommended
that members of the community use tags of the form “NAME-
API” (e.g., Facebook-Graph-API). Alternatively, if the tag
“API” is used by itself, it needs to be accompanied by an
additional tag that can help characterise posts in a more precise
manner (e.g., API, Facebook-Graph, etc.). We used Stack
Exchange Data Explorer (SEDE)9, an online tool that allows
users to write custom queries to retrieve SO data.

Initially, we inquired about tags related to APIs10, which
consists of 550 tags in total, with 338,339 threads overall as

6https://stackoverflow.com/tags
7https://stackoverflow.com/help/tagging
8https://stackoverflow.com/tags/api
9https://data.stackexchange.com/stackoverflow/queries
10http://data.stackexchange.com/stackoverflow/query/746028/all-questions-

tagged-with-a-given-tag-and-possibly-other-tags-too-with-score-at



of 11th April 2018. To determine the sample size [43], we
employed a 5% margin of error and a confidence interval
of 95%, and by using z-score z = 1.96. We obtained a
recommended sample size of 338.7 posts. We thus rounded
this number up to 400 Q&A threads.

We used a query to retrieve 400 randomly selected threads
tagged with ‘%API%’, where the “%” wildcard symbol in
this query represent any combination of characters. The query
above therefore can include threads tagged with tags of
the form “NAME-API”, “NAMEAPI”, “APINAME”, “API-
NAME” and “API”11. We further manually curated the original
list of 400 posts to eliminate those containing unrelated tags.
For example, we removed posts that contained “api” as part
of a word (e.g., “zapier-cli”, “mkmapitem”, etc.). As a result,
we filtered out 166 posts and ended up with a total of 234
posts for the analysis.

B. Qualitative analysis

We used thematic mapping analysis [41] as the main qual-
itative method for analyzing the sampled Q&A threads. The
guidelines of the thematic mapping analysis suggest that the
process starts with data extraction, data coding, and identi-
fication of the emerged themes and checking their synthesis
for trustworthiness. We refer to the themes emerging from the
thematic analysis as API topics. The resulting Q&As from
the data sampling step contained a total of 234 posts, each
of which was analysed separately following guidelines from
[44]. During the analysis we (i) checked the relevance of posts
to verify if they indeed discuss APIs and related issues, (ii)
checked the attributes of each post (e.g., tags) to further get
insights into the post, and (iii) investigated the main topics
related to APIs following the steps of thematic analysis [41].
We coded each post to support the formation of the thematic
mapping for the topics using a spreadsheet, which we make
available on-line.12

IV. FINDINGS

We present our findings from the exploratory study of API
topic issues. Table I shows the details of our dataset. By
following our heuristic for selecting API-related posts (see
Section III-A), we included 234 out of 400 randomly selected
posts in April 2018. Based on our heuristic, we identified that
approximately 2% of SO posts are related to API issues.

The analysis of the selected 234 posts revealed eight main
topics related to APIs: API Definition, API Usage, API Se-
curity, API Constraints, Debugging, API Documentation, API
Settings, and Curation. We present these topics in Figure 1,
which is also available as an interactive, on-line map13. We
define each topic in Table II and then elaborate on each of
these topics and their subtopics in the following subsections.

11http://data.stackexchange.com/stackoverflow/query/840515/get-top-400-
questions-with-content-tagged-with-something-randomly

12https://tinyurl.com/t29d8px
13https://tinyurl.com/s7yuywj

TABLE I
SO API POSTS RATIO AND SAMPLING

SO

Posts

API

related

posts

API

posts

Ratio

Suggested

Sample size

Actual

Sampling

Selected

Posts

16,039,215 338,339 2% 338 400 234

TABLE II
API TOPIC ISSUES DEFINITIONS

Topic Description

API Definition Dealing with API specifications, classes and de-
scriptions of methods. On a higher level, finding
an API suitable for usage.

API Usage This topic handles API usage by supporting imple-
mentation of features, checking for the possibility
of implementation, understanding and seeking bet-
ter ways to implement a feature using APIs.

API Security In this topic, the main concern is to handle au-
thentication and authorization to support features
implementation and understand such implementa-
tion.

API Constraints Constraints and limitations imposed by the API
owner on its usage.

Debugging Identifying and fixing defects related to using an
API method or request (e.g., in Web APIs).

API Documentation Redirection to reference documentation or report-
ing issues.

API Settings Deals with settings related to APIs, the associated
working environment and other requirements for
using an API.

Curation Activities performed to improve the content by
creating, adding, updating, and removing content
(i.e., textual content, code, tags, URIs, error logs)
in API-related questions.

A. API Definition

The definition of an API typically includes specifications for
object classes, routines, parameters, data structures, and de-
scriptions of methods, usually listed in an API documentation
[1]. Developers may find such definitions challenging to under-
stand, unclear, and with incomplete descriptions [24]. In this
context, we refer to API Definition to the definition of methods,
parameters and design patterns (for client code) for the proper
usage of APIs. We have under this topic: Version management,
API/Framework recommendation, setting parameters and API
design patterns. We discuss each of these next.

API Version Management. This sub-topic includes dealing
with resources, classes and methods across different API
versions by an API client. An API client code typically
binds to a specific version of an API, usually for a specific
time window. This binding fails when the client code does



Fig. 1. The main topic issues identified in SO Q&As along with their respective sub-topics. An interactive, online map is available at https://tinyurl.com/s7yuywj

not consider the current version of the API. This sub-topic
includes posts with issues related to handling versions of APIs
and their appropriateness for the programming language and
software libraries at the developer end. For example, when
using a specific version of an API, any client code needs
to comply with its requirements to get the expected data or
functionality. For instance, in question [Q150] (see footnote 12
for a complete list of questions), the reason of an API request
issue is found to be related to the usage of an API version
that is different from the version on a server (see the answer to
question [Q150]). Issues that involve introducing new methods
or the deprecation of some methods are considered disruptive
to consumers and developers [45].

API/Framework Recommendation. This sub-topic refers
to posts related to identifying and recommending suitable
framework libraries or APIs, targeting support to specific
usage scenarios or programming tasks. For example, a user
asked, “Is there any library (or even better, web service)
available which can convert from a latitude/longitude into
a time zone?” [Q335]. The accepted answer, listed on SO,
includes some available solutions and suggests a service that
the answerer developed to do the exact required functionality.
In SO, asking for opinions/recommendations such as for APIs,
frameworks and libraries are considered off-topic14. This aims
at discouraging opinion-based Q&As.

14https://meta.stackoverflow.com/questions/255468/opinion-based-
questions

Setting up Parameters. While several studies focus on the
usage of APIs such as [46]–[49], our analysis shows that devel-
opers still find difficulties identifying which API parameter can
help them with their intended tasks. SO community can help
developers to choose suitable parameters to use. For example,
in post [Q242], a user needs to understand parameters for
using SQL APIs. An explanation provides details about the
functions (e.g., statements parsed, processing, and parameters
sent) to fulfil the request.

API Design Patterns. Design patterns are a set of formalised
guidelines and practices that developers may follow when
designing a software [50]. This sub-topic includes posts to help
understand proper design patterns and practices. Issues within
this topic are typically related to best practices and decisions in
API design. For example, post [Q164] has an explicit request
for a design decision about using an object or a collection as a
parameter. The community provided suggestions that include
best practices as well as advantages and disadvantages for each
design decision.

B. API Usage

Posts within this topic report on various usage activities that
support the development of software using APIs. API Usage
topic includes the following activities: Features implementa-
tion, implementation feasibility, understanding functionality,
seeking alternative implementation and development environ-
ment.



Features Implementation. This topic represents an imple-
mentation of a feature using an API (i.e., part of a software
development task using API classes / methods or an API
request). In features implementation, we find coverage for:

How-to-Use-a-Function: The questioner describes a function
and asks how to use it. Most posts include initial code in
the question with details about the API used, asking how
to implement it. For instance [Q34], a developer needs to
implement a function that saves the application state using
ASP.NET Web API and an initial code is included. In the
answer, a new code example is proposed with specific API
methods to help support usage required by the questioner.
This subtopic is similar to the question type “How-To-Do-It”
identified by Nasehi et al. [14], and represents a significant
part of developers’ questions. Showing good prior efforts with
code may help questions in attracting answers15.

Handling API Return Data. Handling return data can involve
encoding, serialisation and pagination. An example question
[Q387], inquiries about how to handle complex JSON response
in an API request, and how to populate the values before
sending them as an HTTP POST request. The answer suggests
the appropriate methods to be used for the intended task.

Getting-Data. Posts within this sub-topic include questions
about how to obtain specific values (i.e., how to get the
required data from an API). For example [Q240], a questioner
asked how to get a specific data field from an API. The answer
contains a detailed explanation on how to get the data, which
functions can be used, and provides a code example to retrieve
the required data field.

Getting-Started and Learning. This subtopic is related to
beginners’ inquiries and their needs to understand API usage.
Posts are typically about API usage, and in most cases it
becomes clear from the corresponding answers that these
questioners are beginners. Answers contain suggestions on
getting-started steps, accompanied by links to API reference
documentation or getting-started guides. In [Q347], the ques-
tioner needs to understand an example extracted from an API
tutorial on how to do web scrapping. The requester further
adds parts of the tutorial’s code. The corresponding answer
provides the class and methods used by the library and adds
a quote from the official API documentation, which helps
understand key concepts.

Feature Implementation Feasibility. In posts under this sub-
topic, questioners mainly ask if it is possible to implement
a feature using a specific API. Answers typically provide
suggestions, which are often accompanied by links to rele-
vant documentation. For example [Q48], a developer asks if
publishing drafts is possible using Facebook Graph API. In
the response, the answerer shows an alternative solution with
a reference to relevant documentation, specifying also which

15https://meta.stackoverflow.com/questions/261592/how-much-research-
effort-is-expected-of-stack-overflow-users

parameters to use in the request. The answerer also complains
about the bad documentation for the “draft” feature in the
official API documentation.

Understanding Functionality. This sub-topic includes posts
that are concerned with understanding an implementation,
including usage of an API method, the behaviour of a method
and clarifications about proper usage of an API. For example,
post [Q108] has a request to understand the usage of two web
scrapping API requests, and the response to this question is a
description of the methods with code example.

Seeking for Alternative Implementation. Here, users ask
questions about how to use API methods and the alternative
solutions to the task at hand. For example, in post [Q354], the
questioner needs to track which window object has keyboard
focus, explaining that using OnIdle() and GetFocus() methods
does not seem appropriate. A highly voted answer suggests
using Windows Hooks, providing documentation link and
quote from the documentation along with descriptions of how
to do it.

Development Environment. A development environment can
be seen as an API sandbox. It allows API users to simulate
and test APIs and mimic the requests and responses for testing
purposes. This supports the development of applications as
if the API is being used in a production environment. For
example, in post [Q67], a user of an API faces challenges
related to Facebook Ads API sandbox. The corresponding
answer includes the steps and directions for using the sandbox
testing environment.

C. API Security
Security issues that developers are facing while using APIs

are mostly related to authorisation. Authorisation is part of
the sign-in process that developers implement in their appli-
cations. In this context, OAuth16 is an example of an open
standard (with several implementations in the form of APIs)
that is widely utilised for this task. We find two major sub-
topics within API Security: OAuth configuration and OAuth
clarification.

OAuth Configuration. This sub-topic is concerned with con-
figuring OAuth, more specifically: How to use OAuth, how to
get tokens, and how to make proper redirection after the OAuth
process is completed, among other questions. For example,
in post [Q19], a questioner asks “How can I redirect to
non-secure URL from the successful authentication of Box
API? [...]”. The corresponding answer suggests that BOX API
OAuth 2.0 needs secure redirection and explains why it is
important to send tokens through secure channels.

OAuth Clarification. This sub-topic includes questions and
answers that help make OAuth more comprehensible. It differs
from the previous sub-topic in that the former focuses more
on configuration and implementation aspects, rather than the

16https://oauth.net



conceptual understanding of the technology. Here, questioners
try to understand concepts related to authorisation using the
OAuth protocol and, in some cases, seek for alternative
solutions. For example, one questioner asked [Q303] if an API
token can be used in multiple applications and the implications
thereof. The corresponding answer provides clarifications and
discuss the possible side effects (e.g., terms and conditions,
throttle limits, etc.).

D. API Constraints
APIs are in many cases (intentionally) designed with certain

constraints such as an input/output constraints, pagination and
authentication recurrence. This is typically done for perfor-
mance and other purposes. The API Constraints topic includes
posts that help understanding such constraints as well as the
potential of specifying if a needed functionality is available as
a feature by the API or not. We identify two sub-topics here:

Possibility of Functionality. We identified situations in which
users seek for an implementation of a feature that is currently
not available or fisible with the API of interest. For example,
in [Q26], a questioner asked how to change the permission
of a user entity, and the answerer replied that such changes
are not possible due to missing features by the API. In other
posts (e.g., [Q277]), questioners are advised to ask for a feature
request addressed to the API owner.

Understanding Usage Limitation. In this sub-topic, we find
posts that contain limitations enforced by the API. Users
require clarification to understand such limitations. For ex-
ample, in post [Q391], a user makes HTTP requests and faces
error messages. The messages indicate that there is either
an insufficient buffer or queue size limitation. The answer
to this question suggests that the issue behind this problem
are multiple parallel requests, and quotes part of the API
documentation with the reference link. The answerer further
proposes that the user checks the API terms of service for
compliance [Q391].

E. Debugging
This topic covers posts with issues related to debugging.

The analysis reveals the following sub-topics: Debugging
request/method call, debugging request URI, debugging un-
expected behaviour, debugging parameters/arguments, and
debugging returned data. Next, we explain each of these sub-
topics.

Debugging Request/Method Call. Here, debugging is typ-
ically related to an incorrect method invocation or incorrect
request. A question with an incorrect method invocation
typically includes the description of the issue, provides code
snippets, and includes the resulting error message(s). The
debugging required consists in resolving the issue for the
method to function correctly. For example, [Q17] uses Box-
API to upload files but gets an error “400 Invalid input
parameters in the request”, and the code was posted along
with the response. The corresponding answer states that an

SDK is available to address this issue, a link to the suggested
SDK repository is provided, and a code example is given to
show the proper usage of the SDK.

Debugging Request URI. Debugging in this subtopic is
related to the errors that occur because of incorrect usage
of the API’s URI. For example, in [Q148], a user attempts
to make a request but the URIs were found to be incorrect.
In [Q232], the returned values of an API are empty, and the
answerer provides an example on how to properly build the
URI so that data gets properly retrieved.

Debugging Unexpected Behaviour. Debugging related to
unexpected behaviour is concerned about an outcome of a
function that produces wrong output or behaves unexpectedly.
For example, in [Q91], Apache Kafka17, a distributed stream-
ing data API, produced many log files with 512MB in size
collectively. The user wonders why such issue happens, and
an answer suggests to look at the timestamps retention so that
logs get deleted accordingly. Typically, such errors take the
form of posts that contain defects with unexpected behaviour,
with a solution and explanation that suggest changes to the
code.

Debugging Parameters/Arguments. Posts under this sub-
topic include errors caused by incorrect usage of parameter
or method arguments. An error may be related to a field name
such as in [Q136]. Similarly, an error may relate to an incorrect
parameter as in [Q9]. The answers include explanations with
corrected parameters or arguments typically contained in a
code example.

Debugging Returned Data. This sub-topic is concerned with
issues related to incorrect data returned from an API call or
request. For example, in [Q129], a user is not getting the
expected return data messages, and the answer suggests a code
example supported by a link to a tutorial blog post.

F. API Documentation

API Documentation is one of the many resources that
supports API usage. We report on two identified sub-topics:
Redirection to API documentation and reporting API docu-
mentation issues.

Redirection to API documentation. This sub-topic includes
posts requesting support to implement a basic task, by de-
scribing the need, or by asking for help with issues such as
errors or implementation difficulties. Answers to these posts
include a redirection to an API documentation link. While API
documentation link was used in more than one area throughout
our analysis, what was clear under this sub-topic is that the
answer is full redirection, meaning that the answer is not
elaborated with an explanation or example. For example, in
[Q254], such redirection is posted as an API Documentation
link related to the question. In addition, we have observed

17https://kafka.apache.org/



descriptions along with the redirection as well, including
quotes of a parts of an API documentation description.

Reporting API Documentation Issues. This sub-topic in-
cludes posts with issues related to an appartently incorrect
usage of APIs (e.g., incorrect returned data). A further in-
spection relevead that posts under this category actually relate
to errors or typos found in the documentation of the API,
similar to what Uddin and Robillard reported in [24]. That
is, users faced difficulties using the API because of incorrect
API documentation. For instance, in [Q257], a user cites a
documentation reference regarding inconsistencies with the
method names in the API documentation (e.g., using a specific
parameter caused errors). The answerer states that it was a typo
and thanks the poster for reporting it.

G. API Settings
APIs require prior settings in some cases before using them,

such as enabling specific utilities or subscribing to a specific
service plan. In this topic, settings needed to be changed,
handled or appropriately enabled before using the API. For
example, in [Q7], performing a specific functionality requires
having an API developer from the support team to enable it to
resolve the issue. In a similar scenario [Q29], settings can be
adjusted by the user of the API, and the answer explains how
to do it. This topic is different from Setting up parameters in
that it is related to requirements that enable functionality of
the API.

H. Curation
In SO, content is curated in various forms.18 A crowd of

developers are actively creating and curating content, driven
by gamification mechanisms [51]. Curating SO Q&As follows
the rules set out by the community. We report on curation
sub-topics based on the curated elements as follows: Curating
code, curating tags, curating content, curating URLs/URIs and
curating error logs.

We find that curation activities related to API programming
code examples are adding code, removing code, formatting
code, and general editing for existing code content. Formatting
includes indentation (i.e., adding spaces or tabs) so that the
code example is properly structured and presented on SO’s
website. Another formatting activity involves adding “back-
ticks” snippets of code so that it is treated as an in-line code
when presented with textual content.

Tags curation mainly involves adding or removing API-
related tags that belong to a question. Such activity is essential
as it categorises API-related questions and makes them more
visible. Some developers may watch or search unanswered
questions based on specific tags in order to answer these
questions. Content curation activities also involve additions
to the textual content of posts, which include edits to the title
and body of questions, and grammar and spelling.

API-related URL/URIs has also been curated to improve
posts. One such curation involves moving from HTTP protocol

18https://stackoverflow.blog/2011/02/05/suggested-edits-and-edit-review

to HTTPS in links found in posts to help improve security.
Finally, we report on adding/removing error log traces to
support activities that improve understanding issues related to
debugging.

V. DISCUSSION

Figure 2 presents the percentage of posts under each API
topic. Note that in this figure we do not include curation, as
curation tasks are pervasive in all sampled posts. Among the
topics presented in Figure 2, API Usage (40%), Debugging
(26%), API Security (11%) and API Constraints (10%) repre-
sent the main ones. Other topics are less represented in our
dataset. Among these four topics, we furthermore found that
the two most covered topics are API Usage and Debugging.
On the one hand, API usage focuses on features implemen-
tation (i.e., implementing a functionality using APIs), which
indicates that SO provides good support for programmers who
write programming code using APIs. Indeed, the majority of
the support received from SO’s community seems to be geared
toward how to use an API. On the other hand, we found that
72% of the debugging support is devoted to providing help
with Web API requests (e.g., REST API calls) or API method
calls. Such support comes in the form of help in debugging
parameters/arguments, debugging requests on URI and debug-
ging implementions that show unexpected behaviour.

2%

3%

8%

10%

11%

26%

40%

0% 10% 20% 30% 40%

API	Settings

API	Documentation

API	Definition

API	Constraints

API	Security

Debugging

API	Usage

Percentage	of	posts

Fig. 2. Percentage of posts per API topics. Note that curation is not inlcluded
in this chart, as curation tasks are pervasive in all sampled posts.

The findings reported in this study has a number of
implications and future directions for both researchers and
practitioners. More specifically, the findings can serve as the
foundation for approaches and tools that aim at supporting
API learning, exploration and discovery, including:

API issues searching and discovery. We identify the need
for developing a system that supports the exploration and
discovery of API topics and to make related issues searchable.
To explore topics and issues related to APIs, we advocate the



development of solutions that allow for topic-based navigation
of Q&A posts. Presenting posts categorized under topic issues
can facilitate API knowledge exploration and discovery par-
ticularly for programmers that are unfamiliar with the target
APIs [52].

Collaborative API exploration and testing environments.

An interesting direction is also that of providing a shared
environment for demonstration and API exploration, as a
solution to simulate API sandboxes but in a shared collabo-
rative environment. Such environment can facilitate informing
developers about missing features, essential interface contracts
and security issues when using APIs. Further empirical inves-
tigation along this line can help bring more insights into this
area, with the ultimate goal of building and improving tools
for learning and using APIs.

Tools to support API features feasibility and constraints

awareness. Researchers and practioners in the area of Soft-
ware Engineering has harnessed CQAs knowledge for a variety
of purposes. Yet there are no tools (we are aware of) that
supports and facilitates the exploration of (i) the feasilibility
of implementing new features within an API (e.g., upon
API users formal request), and (ii) constraints imposed on /
affecting an API to improve constraint awareness. Such tool
can be beneficial for closing the gap between API users and
API developers in the context of API constraints and new
features.

Notwithstanding the findings reported in this paper, we
acknowledge the limitations of our study. First, due to the
sheer amount of posts in SO (approximately 16 million posts
as of April 2018), this study relied on random sampling and
heuristics to select API-related posts, which may affect the
completeness of the identified topic issues (recall perspective).
Once posts were sampled, our manual inspection of each post
guaranteed that the retained threads indeed contained API-
related issues (precision perspective). Second, the qualitative
nature of this study comes with the risk of introducing human
bias during topic issues identification. This limitation was mit-
igated, as recommended in [41], by seeking agreement of co-
researchers, where a Ph.D Student, a Postdoctoral Researcher
and a Senior Researcher were involved.

VI. CONCLUSION

The findings of our study aim at providing a better under-
standing of current API topics issues in SO. We believe these
findings can be useful as a foundation for further studies and
tools development that support API documentation, learning
and discovery. Future directions for this research includes API
topic issues searching and discovery, collaborative and effec-
tive API exploration and testing environments, and exploration
of API topic issues in other contexts such as software reposi-
tories and free and open source software (FOSS) communities.

Acknowledgement. This research was done in the context of
the first author’s Ph.D. thesis [53] as part of the supervision
of his co-authors.

REFERENCES

[1] W. Maalej and M. P. Robillard, “Patterns of knowledge in API reference
documentation,” IEEE Transactions on Software Engineering, vol. 39,
no. 9, pp. 1264–1282, 2013.

[2] C. Rodrı́guez, M. Baez, F. Daniel, F. Casati, J. C. Trabucco, L. Canali,
and G. Percannella, “REST APIs: a large-scale analysis of compliance
with principles and best practices,” in International conference on web
engineering. Springer, 2016, pp. 21–39.

[3] U. Dekel and J. D. Herbsleb, “Reading the documentation of invoked
API functions in program comprehension,” in 2009 IEEE 17th Inter-
national Conference on Program Comprehension. IEEE, 2009, pp.
168–177.

[4] J. Mendling, I. Weber, W. V. D. Aalst, J. V. Brocke, C. Cabanillas,
F. Daniel, S. Debois, C. D. Ciccio, M. Dumas, S. Dustdar et al.,
“Blockchains for business process management-challenges and opportu-
nities,” ACM Transactions on Management Information Systems (TMIS),
vol. 9, no. 1, pp. 1–16, 2018.

[5] C. Janiesch, A. Koschmider, M. Mecella, B. Weber, A. Burattin,
C. Di Ciccio, A. Gal, U. Kannengiesser, F. Mannhardt, J. Mendling et al.,
“The Internet-of-Things meets business process management: Mutual
benefits and challenges,” arXiv preprint arXiv:1709.03628, 2017.

[6] K. Shaikh, “Eagle-eye view of azure cognitive services,” in Developing
Bots with QnA Maker Service. Springer, 2019, pp. 1–29.

[7] R. Hull and H. R. M. Nezhad, “Rethinking BPM in a cognitive
world: Transforming how we learn and perform business processes,” in
International Conference on Business Process Management. Springer,
2016, pp. 3–19.

[8] S. Zamanirad, B. Benatallah, M. C. Barukh, F. Casati, and C. Rodriguez,
“Programming bots by synthesizing natural language expressions into
API invocations,” in 2017 32nd IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 2017, pp. 832–837.

[9] S. Zamanirad, B. Benatallah, C. Rodriguez, M. Yaghoubzadehfard,
S. Bouguelia, and H. Brabra, “State machine based human-bot conver-
sation model and services,” in International Conference on Advanced
Information Systems Engineering. Springer, 2020, pp. 199–214.

[10] C. Rodriguez, S. Zamanirad, R. Nouri, K. Darabal, B. Benatallah, and
M. Al-Banna, “Security vulnerability information service with natural
language query support,” in International Conference on Advanced
Information Systems Engineering. Springer, 2019, pp. 497–512.

[11] S. Subramanian, L. Inozemtseva, and R. Holmes, “Live API documenta-
tion,” in Proceedings of the 36th International Conference on Software
Engineering, 2014, pp. 643–652.

[12] X. Chen and J. Grundy, “Improving automated documentation to code
traceability by combining retrieval techniques,” in 2011 26th IEEE/ACM
International Conference on Automated Software Engineering (ASE
2011). IEEE, 2011, pp. 223–232.

[13] C. Parnin and C. Treude, “Measuring API documentation on the web,” in
Proceedings of the 2nd international workshop on Web 2.0 for software
engineering, 2011, pp. 25–30.

[14] S. M. Nasehi, J. Sillito, F. Maurer, and C. Burns, “What makes a good
code example?: A study of programming Q&A in StackOverflow,” in
2012 28th IEEE International Conference on Software Maintenance
(ICSM). IEEE, 2012, pp. 25–34.

[15] M. Zahedi, M. Ali Babar, and C. Treude, “An empirical study of security
issues posted in open source projects,” in Proceedings of the 51st Hawaii
International Conference on System Sciences, 2018.

[16] A. Barua, S. W. Thomas, and A. E. Hassan, “What are developers talking
about? An analysis of topics and trends in stack overflow,” Empirical
Software Engineering, vol. 19, no. 3, pp. 619–654, 2014.

[17] A. Hindle, N. A. Ernst, M. W. Godfrey, and J. Mylopoulos, “Automated
topic naming to support cross-project analysis of software maintenance
activities,” in Proceedings of the 8th Working Conference on Mining
Software Repositories, 2011, pp. 163–172.

[18] F. M. Delfim, K. V. Paixão, D. Cassou, and M. de Almeida Maia,
“Redocumenting APIs with crowd knowledge: A coverage analysis
based on question types,” Journal of the Brazilian Computer Society,
vol. 22, no. 1, p. 9, 2016.

[19] C. McMillan, M. Grechanik, D. Poshyvanyk, C. Fu, and Q. Xie,
“Exemplar: A source code search engine for finding highly relevant
applications,” IEEE Transactions on Software Engineering, vol. 38,
no. 5, pp. 1069–1087, 2011.



[20] L. W. Mar, Y.-C. Wu, and H. C. Jiau, “Recommending proper API
code examples for documentation purpose,” in 2011 18th Asia-Pacific
Software Engineering Conference. IEEE, 2011, pp. 331–338.

[21] J. E. Montandon, H. Borges, D. Felix, and M. T. Valente, “Documenting
APIs with examples: Lessons learned with the apiminer platform,” in
2013 20th working conference on reverse engineering (WCRE). IEEE,
2013, pp. 401–408.

[22] T. Gvero and V. Kuncak, “Interactive synthesis using free-form queries,”
in 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, vol. 2. IEEE, 2015, pp. 689–692.

[23] S. Thummalapenta and T. Xie, “Spotweb: Detecting framework hotspots
and coldspots via mining open source code on the web,” in 2008 23rd
IEEE/ACM International Conference on Automated Software Engineer-
ing. IEEE, 2008, pp. 327–336.

[24] G. Uddin and M. P. Robillard, “How API documentation fails,” IEEE
Software, vol. 32, no. 4, pp. 68–75, 2015.

[25] S. Sohan, C. Anslow, and F. Maurer, “A case study of web API
evolution,” in 2015 IEEE World Congress on Services. IEEE, 2015,
pp. 245–252.

[26] M. Kechagia and D. Spinellis, “Undocumented and unchecked: Excep-
tions that spell trouble,” in Proceedings of the 11th Working Conference
on Mining Software Repositories, 2014, pp. 312–315.

[27] S. M. Nasehi and F. Maurer, “Unit tests as API usage examples,” in
2010 IEEE International Conference on Software Maintenance. IEEE,
2010, pp. 1–10.

[28] L. Guerrouj, D. Bourque, and P. C. Rigby, “Leveraging informal
documentation to summarize classes and methods in context,” in 2015
IEEE/ACM 37th IEEE International Conference on Software Engineer-
ing, vol. 2. IEEE, 2015, pp. 639–642.

[29] C. Treude and M. P. Robillard, “Augmenting API documentation with
insights from stack overflow,” in 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE). IEEE, 2016, pp. 392–
403.

[30] Y.-C. Wu, L. W. Mar, and H. C. Jiau, “Codocent: Support API usage
with code example and API documentation,” in 2010 Fifth International
Conference on Software Engineering Advances. IEEE, 2010, pp. 135–
140.

[31] B. Dagenais and M. P. Robillard, “Creating and evolving developer doc-
umentation: Understanding the decisions of open source contributors,” in
Proceedings of the eighteenth ACM SIGSOFT international symposium
on Foundations of software engineering, 2010, pp. 127–136.

[32] F. F. Correia, A. Aguiar, H. S. Ferreira, and N. Flores, “Patterns
for consistent software documentation,” in Proceedings of the 16th
Conference on Pattern Languages of Programs, 2009, pp. 1–7.

[33] H. Zhong and Z. Su, “Detecting API documentation errors,” in Proceed-
ings of the 2013 ACM SIGPLAN international conference on Object
oriented programming systems languages & applications, 2013, pp.
803–816.

[34] L. Thominet, “Building foundations for the crowd: Minimalist author
support guides for crowdsourced documentation wikis,” in Proceedings
of the 33rd Annual International Conference on the Design of Commu-
nication, 2015, pp. 1–10.

[35] M. F. Zibran, F. Z. Eishita, and C. K. Roy, “Useful, but usable? Factors
affecting the usability of APIs,” in 2011 18th Working Conference on
Reverse Engineering. IEEE, 2011, pp. 151–155.

[36] P. J. Danielsen and A. Jeffrey, “Validation and interactivity of web API
documentation,” in 2013 IEEE 20th International Conference on Web
Services. IEEE, 2013, pp. 523–530.

[37] M. Allamanis and C. Sutton, “Why, when, and what: analyzing Stack
Overflow questions by topic, type, and code,” in 2013 10th Working
Conference on Mining Software Repositories (MSR). IEEE, 2013, pp.
53–56.

[38] P. K. Venkatesh, S. Wang, F. Zhang, Y. Zou, and A. E. Hassan, “What
do client developers concern when using web APIs? An empirical study
on developer forums and Stack Overflow,” in 2016 IEEE International
Conference on Web Services (ICWS). IEEE, 2016, pp. 131–138.

[39] C. Parnin, C. Treude, L. Grammel, and M.-A. Storey, “Crowd documen-
tation: Exploring the coverage and the dynamics of API discussions on
Stack Overflow,” Georgia Institute of Technology, Tech. Rep, vol. 11,
2012.

[40] M. Ahasanuzzaman, M. Asaduzzaman, C. K. Roy, and K. A. Schneider,
“Classifying stack overflow posts on API issues,” in 2018 IEEE 25th
international conference on software analysis, evolution and reengineer-
ing (SANER). IEEE, 2018, pp. 244–254.

[41] D. S. Cruzes and T. Dyba, “Recommended steps for thematic synthesis
in software engineering,” in 2011 international symposium on empirical
software engineering and measurement. IEEE, 2011, pp. 275–284.

[42] W. Mo, J. Zhu, Z. Qian, and B. Shen, “SOLinker: Constructing semantic
links between tags and URLs on StackOverflow,” in 2016 IEEE 40th
Annual Computer Software and Applications Conference (COMPSAC),
vol. 1. IEEE, 2016, pp. 582–591.

[43] G. D. Israel, “Determining sample size,” University of Florida, Florida
Cooperative Extension Service, Fact Sheet PEOD-6, 1992.

[44] K. Charmaz, Constructing grounded theory: A practical guide through
qualitative analysis. sage, 2006.

[45] S. Wang, I. Keivanloo, and Y. Zou, “How do developers react to
restful API evolution?” in International Conference on Service-Oriented
Computing. Springer, 2014, pp. 245–259.

[46] M. Ichinco, W. Y. Hnin, and C. L. Kelleher, “Suggesting API usage
to novice programmers with the example guru,” in Proceedings of the
2017 CHI Conference on Human Factors in Computing Systems, 2017,
pp. 1105–1117.

[47] W. Wang, H. Malik, and M. W. Godfrey, “Recommending posts con-
cerning API issues in developer Q&A sites,” in 2015 IEEE/ACM 12th
Working Conference on Mining Software Repositories. IEEE, 2015, pp.
224–234.

[48] N. Wu, D. Hou, and Q. Liu, “Linking usage tutorials into API client
code,” in Proceedings of the 3rd International Workshop on Crowd-
Sourcing in Software Engineering, 2016, pp. 22–28.

[49] K. Zimmerman and C. R. Rupakheti, “An automated framework for rec-
ommending program elements to novices (n),” in 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2015, pp. 283–288.

[50] D. Riehle and H. Züllighoven, “Understanding and using patterns in
software development,” Tapos, vol. 2, no. 1, pp. 3–13, 1996.

[51] H. Cavusoglu, Z. Li, and K.-W. Huang, “Can gamification motivate
voluntary contributions? The case of StackOverflow Q&A community,”
in Proceedings of the 18th ACM conference companion on computer
supported cooperative work & social computing, 2015, pp. 171–174.

[52] C. E. Grant, C. P. George, V. Kanjilal, S. Nirkhiwale, J. N. Wilson, and
D. Z. Wang, “A topic-based search, visualization, and exploration sys-
tem,” in The Twenty-Eighth International Flairs Conference. Citeseer,
2015.

[53] G. Ajam, “Quality of Application Programming Interfaces Documen-
tation and Topics Issues Exploration.” Ph.D. dissertation, University of
New South Wales, Sydney, Australia, 2019.


