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carlos.rodriguez@uc.edu.py

Abstract. Collaboration tools are important for workplace communi-

cation. The amount of conversation data produced in workplaces are

increasing rapidly, placing a burden on workers. There is a necessity to

analyze large amounts of data automatically to extract actionable infor-

mation. Multiple studies were conducted on action extraction to identify

actions such as promises and requests. Most of these studies used super-

vised learning methods. The key problem discussed in this paper are (i)

the automatic extraction of action types from short text conversations in

collaboration tools such as Twitter and Slack, and (ii) leveraging large

amounts of data using unsupervised learning. Data labelling is an impor-

tant issue when dealing with large datasets for training and extending the

corresponding algorithms across di↵erent actions and domains. In this

paper, we propose an unsupervised learning approach using a combina-

tion of relation extraction techniques and word embedding to leverage

large amounts of data. The action2vec model is created to identify spe-

cific actions from short text of conversation data. We have evaluated

our unsupervised method against supervised learning and the results are

comparable. The action type extractor is integrated with Slack to pro-

vide assistance for action type extraction. Thus, the contributions of this

paper include an unsupervised learning method to utilize large amounts

of data, an automatic extraction of action types from short text and the

integration of our approach with state of the art collaboration tools.
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1 Introduction

Collaboration tools (e.g., Slack3) have become a primary communication means
in the workplace and information workers generate large volumes of conversation
data in their day-to-day tasks. Email, blogs, wikis and Twitter have become in-
creasingly available and accepted in workplace communications [23]. More specif-
ically, email and instant messaging (IM) are considered key tools in this context.

3
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Email is typically used on a daily basis across organizations and it is an impor-
tant tool for non face-to-face communication [8]. Instant messaging (e.g., IBM
Lotus Instant Messaging) are multi-tasking tools that allow people to communi-
cate and, at the same time, engage in other activities [16]. It is more immediate
than email and communication happens in (near) real time [16].

Despite the advantages provided by these tools, users are typically over-
whelmed with the amount of data produced by such communications resulting
in a problem known as information overload [24, 4]. Workplace productivity can
be a↵ected if such information is not properly organized in order to e↵ectively
manage ongoing tasks [24]. A key requirement to address this issue is that of
automatically identifying actions from email conversations and short texts [10].
Here, an action is something that is done by an actor (e.g., a person) or it can be
a request, making a commitment to the user interest in natural language conver-
sations [7, 15, 18]. An action type represents a particular action in a process. For
example, the e-commerce process includes action types such as “Deliver, Cancel,
Return, Payment and Purchase”. For instance,“I will contact customer services
if it doesn’t arrive on time” is an example of a particular action type: “Deliver”.
The identification of such action types are important for the categorization and
handling of conversations.

Conversations typically have many actions, which can be identified using
manual annotation [11]. This approach can lead to unidentified actions that
may result in delays and other issues that a↵ect the organization’s activities.
The automatic extraction of actions from emails and instant messages can help
workers increase their productivity. In this context, multiple studies were con-
ducted in the past to identify actions from emails and collaboration tools [4,
7, 14, 22]. These studies typically use supervised methods for action extraction,
which requires labelled data. Such requirement results in important limitations
when these supervised approaches need to be extended to various actions. Data
labelling is one of the main concerns for action extraction using these approaches
and it is important to use large unlabelled data to improve the results [6, 27, 12].
In this paper, we propose an unsupervised approach and focus on the extraction
of action types such as “Deliver, Cancel, Return, Payment and Purchase” from
short text conversation, then we showcase the integration of our approach into
a widely used collaboration tool (Slack).

The key contribution of this paper consists in an approach that allows for (i)
analyzing conversation data from collaboration tools involving short text con-
versations, (ii) training large volumes of data without labelling, which can help
overcome the limitations of supervised learning approaches, and (iii) seamlessly
and e↵ectively adapting to scenarios and domains with multiple actions.

2 Related Work

The problem of action identification from text has been studied extensively in
previous research. For example, emails are classified based on the intention of the
email sender using nouns (e.g., information, meeting, task) and verbs (e.g., pro-
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pose, commit, deliver) called email speech act [7], which identifies the intention in
emails such as “request, propose, amend, commit or deliver”. Previous research
highlighted that users feel overloaded when tracking large number of threads and
length of the intervals between messages in email threads [24, 4], which involves
manual identification of action hidden in the emails. Another study focused on
finding the strength of request and commitment in workplace emails using ex-
ploratory annotation tasks [15]. The result encourages automatic detection of
request and commitment in emails. The classification- or prioritization-based
methods are used to group email based on actions [13, 21, 25]. This method
works at the level of the entire email including all statements from the email
and do not focus on individual statements [13]. eAssistant [18] learns action
verbs and related set of features to identify actionable items such as requests
and promises. These studies are focused on identifying generic classes such as
request and commitment actions in emails. In our work, instead, we focus on ac-
tion type extraction to identify specific actions such as “Deliver, Cancel, Return,
Payment and Purchase” from short text conversation data. These short texts
have less than 200 characters (i.e., data is sparse) and as a result information
extraction becomes harder [9].

The Semanta system [20] was implemented for identifying actions based on
conent summarization of emails. It extracts types of actions (e.g., file request,
task assignment) from emails. A rule-based method [21] is used to classify actions
into categories such as “Request, Suggest, Assign and Deliver”. These methods
need human intervention to classify emails and involve manual annotation and
user reviews [20, 21]. In contrast to the text typically found in e-mails, instant
messaging texts are fairly short and include idioms and abbreviation [1], making
the task of automatic extraction of action types more challenging.

Finally, the work presented in [26] proposes an approach to the problem of
event type recognition, which leverages word embedding techniques [17] to find
events by averaging the vectors of words in n-grams. Word embedding techniques
can help group semantically similar words to find relevant actions. In this paper,
we propose an unsupervised method leveraging word embedding for short text
conversation.

3 Action type framework

The action type extractor framework is illustrated in the Figure 1. The initial
layer has relation extractor to extract relation tuples (subject, relation, object)
from seed data. The open information extraction techniques [19] are used for
this task. The relations from these tuples are used to initially identify the action
types such as “Deliver, Cancel, Return, Payment and Purchase”. The extracted
relation includes relevant actions, other actions or no actions. In Seeds selection,
the relations that are related to action types such as “Deliver, Cancel, Return,
Payment and Purchase” are selected. If the selected seed relations are used di-
rectly for action extraction then it will be able to filter only limited actions (those
matching the seed relations). We convert the seed relation words to its vector
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Fig. 1. Action type extractor framework

form using word embeddings [17] in order to capture the words semantically
similar to each other. This can help us capture actions semantically related to
the selected seed relations (i.e., action types such as “Deliver, Cancel, Return,
Payment and Purchase”). The message selector filters the messages that match
the seeds for each action type. This is, it picks the relevant message from large
datasets to train the action2vec model. The tagger extracts nouns, verbs and ad-
jectives from the message, which are used to formulate bi-gram, tri-grams, etc.
The n-grams with the closest distance w.r.t. the seeds vector are obtained by
the N-gram selector. The Action2vec trainer improves the vector and produces a
final trained action2vec model used to find the closest action types for messages.

4 Action type extraction

The customer support tweets [3] are considered as data source for training our
action2vec model. The action type extractor is used to extract actions from
tweets. The nouns, verbs and adjectives are extracted from each tweet to identify
actions. Verbs such as “Deliver, Cancel, etc.” and noun such as “Product, Time,
etc.” and adjective such as “Many, Next, etc.” are extracted to identify actions.
In our approach, we extract n-grams and do not restrict ourselves to bi-grams
or tri-grams only. This will help us improve the action2vec model to include all
keywords from tweets so that we can train our model without such restrictions.

The action type extractor leverages the vector space model (VSM) [17] to
extract vectors for each word (nouns and verbs) found in a tweet and calculate a
tweet vector by averaging the vectors of individual words contained in the tweet.
The similarity ratio between the tweet vector and action2vec model of all action
types are then calculated. The action type which has highest similarity ratio
with the tweet vector and above a given threshold is considered as action type
for a given tweet.
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4.1 Seed generation

The seed generation is an initial step to build n-grams for action types. The
tuples (subject, relation and object) are extracted using Stanford OpenIE [2]. For
example, the tweet “I’ve purchased a gift card for a second time and the first
arrived within minutes” has tuples (first, arrive within, minute). The relation
“arrive within” related to action type “Deliver” is considered as a seed. The
“Deliver” action type has relations such as “arrive within”, “deliver product”,
etc. after excluding stop words. The seeds are extracted from tweet samples for
each action type. The word embedding model [17] is used to calculate vectors
for seeds in order to create our so-called seeds vectors.

The n-grams vector is created by calculating the average of vectors for each
word in the n-grams [26]. For example, vector(“arrive”) and vector(“within”) are
extracted for the seed “arrive within”. Thus, the individual vectors are averaged
to create a vector for the seed “arrive within”. Similarly, the average of all seeds
of a particular action type ( “arrive within”, “deliver product”, etc.) is used as
seeds vector. Eq. 1 and 2 show the calculation of seed and seeds vector.

��!
seed =

mP
i=1

���!
wordi

m
(1)

���!
seeds =

nP
j=1

��!
seedj

n
(2)

Here,
��!
seed is a vector of a seed by averaging all words for each relation.

���!
seeds

is a vector of seeds by averaging all seeds for each action type. m is number of
words in the relation. n is number of seeds in the action type.

The seeds are created based on specific keywords from a small sample. We
need to train seeds vector with larger training sample to find all relevant tweets
that belong to the action type. We create action2vec model using a larger sample
based on seeds of each action type.

4.2 Action2Vec model

A large set of tweets are considered to create our action2vec model. The relation
phrase are extracted for each tweet. The tweets with relation phrases matching
with our seeds are selected for training the action2vec model. The nouns, verbs
and adjectives of the selected tweets are extracted for training. The vector is
extracted for each word of n-grams (nouns, verbs and adjectives) and averaged
to create a message vector. This message vector is compared with the seeds
vector to find the similarity ratio. The cosine similarity is calculated based on
the orientation of two vector (x,y). Eq. 3 shows the dot matrix of two vectors
(x,y).

cos ✓ =
�!x ⇤ �!y

||�!x ||||�!y || (3)
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Fig. 2. Training action2vec model

The threshold 70% is considered (based on experiments) to find the relevant
action type for the tweet. If similarity ratio exceeds 70% then the message vector
and seeds vector are averaged to train action2vec model. This process is repeated
for all tweets in the training data. Figure 2 shows training of action2vec model
from training data.

During training, words in tweets representing nouns, verbs and adjectives
do not have equal importance. This means that some of the words increase the
similarity while others decrease it with the seeds vector. To overcome this issue,
we have come up with combinations of up to 5 words for n-grams (noun, verb
and adjective) to find similarity with the seeds vector. The vector from each
combination are compared with the seeds vector and then the highest similarity
vector is selected to train action2vec model. This method filters out irrelevant
combinations for training the action2vec model and helps reduce noise in the
model. Figure 2 c) shows the selection of n-grams based on similarity with seeds
vector.

5 Dataset and Evaluation

In order to evaluate the feasibility of our approach, we used tweets data to train
our action2vec model and compared it with seeds vectors. The large collection
of customer support Twitter data [3] was used for the analysis. There are ap-
proximately 3 million tweets from multiple brands such as Apple, Amazon, Uber
and British Airways. It contains inbound tweets from customers and replies from
customer support representatives. The customer support Twitter data has short
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text conversations and di↵erent types of action. The major e-commerce brand
Amazon is selected because it has multiple action types such as “Deliver, Can-
cel, Return, Payment and Purchase” for e-commerce processes. A total of 128K
Amazon inbound tweets are considered for our analysis.

5.1 Seed data

The sample data for seeds are extracted from Amazon tweets data. A random
sample of 5K tweets (out of 128K tweets) are extracted to find seeds for action
types. The Stanford OpenIE [2] is used to find the relations out of these 5K
tweets. The extracted relation phrase from tuples are used to identify the relevant
seeds for each action type. We focused on action types such as “Deliver, Cancel,
Return, Payment and Purchase”, which are available in the majority of tweets.
For example, the tweet “I don’t want to return all 3 items though, I just want to
send one back and have it replaced with the correct one, will that be ok?” has the
tuples (I, send back, one). The seed “send back” is relevant to “Return” action
so it is included in seeds for “Return”. The relation that are not relevant to any
action types are ignored. For example, “I tried talking to your chatbot. It wasn’t
very helpful.” has the tuples (I, talk to, your chatbot) and not related to any of
action types. For instance, a total of 57 seeds out of 5K tweets was extracted for
the “Deliver” action type. Table 1 shows the number of seeds and examples for
each action type.

Table 1. Seeds data

Action type No. of seeds Example

Deliver 57 arrive within, deliver thing to

Cancel 21 cancel order via, ask refund for

Return 16 send back, replacement

Payment 18 manage payment through, take money from

Purchase 32 order package for, place order on

5.2 Training data

A large set of tweets (50K out of 128K tweets) is used for training action2vec
model. The relation phrases are extracted from each tweet in the training data.
The relation phrases that match with seeds are filtered for training specific action
types. For example, the tweet “It should arrive in the next couple of days. Still
not same day.” has the tuple (it, should arrive in, couple of day), where the
relation “should arrive in” matches with seeds in the “Deliver” action type.
This tweet is considered for training the action2vec model for the “Deliver”
action type. Using this approach, for instance, a total 1,863 tweets were filtered
out of 50K tweets for the “Deliver” action type.
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Armed with these training data (tweets), we train our action2vec model for
each action type. Figure 2 shows examples of the training tweets for action2vec
model. The message vector from tweets that have highest similarity with seeds
vector are used to train the action2vec model. The number of n-grams selected
to train action2vec model are “Deliver” (753), “Cancel” (148), “Return” (167),
“Payment” (236) and “Purchase” (268).

Fig. 3. Seeds vector and action2vec model comparison

5.3 Experiment and results

There are 5 action types considered for evaluation. We prepared an evaluation
dataset with tweets for action types “Deliver” (215), “Cancel” (217), “Return”
(211), “Payment” (204) and “Purchase” (225). Each category contains 50%
of tweets related to particular action type and the remaining 50% either have
other action types or no actions whatsoever.

The evaluation is done for seeds vector and action2vec model separately. We
do this to find out the benefits of using our unsupervised training method. We
feed the tweets from our evaluation dataset to both seeds vector and action2vec
model to get the respective scores. The threshold is set to 60% based on our
experiments as the similarity ratio threshold for each action type. We use pre-
cision, recall and F-measure metrics to compare the results of the seeds vector
and action2vec model.

The seeds vector achieved better precision than action2vec model for all
action types as shown in Figure 3. For example, for the action type “Purchase”
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seeds vector has 98% precision comparing to 91% precision of action2vec model.
The recall is very low for seeds vector comparing to action2vec model. This
shows action2vec model is able to identify most of the actions compared to
seeds vector. The “Cancel” action type has achieved the highest recall (60%)
for seeds vector among all action types. The action2vec model has more than
70% in recall for “Deliver” and “Cancel” and more than 60% for other action
types. The action2vec model has higher F-measure for “Deliver” (82%), “Cancel”
(71%), “Return” (77%), “Payment” (77%) and “Purchase” (76%). The results
show that a large set of training data has improved action2vec model and it is
more e↵ective in finding all action types. Figure 3 shows all the metrics used for
comparison of seeds vector and action2vec model results.

We demonstrated how we trained and evaluated our unsupervised method
for 5 action types. Our approach can be easily extended to di↵erent actions. The
relevant seeds from sample data need to be identified initially for each action.
Then our unsupervised training method can create the action2vec model for
action types by training with large datasets. This unsupervised method can be
adapted to di↵erent action types and domains with less e↵ort as compared to
other approaches that heavily depend on data labelling.

Fig. 4. Comparison of action2vec and SVM results

6 Comparison with Machine learning method

The unsupervised method action2vec has been evaluated further by comparing
with support vector machine (SVM). SVM is a supervised machine learning
method that can be used to classify natural language text. We used a SVM
classifier from study [5] to find actions from emails.

Given its supervised nature, this classifier requires labelled data. We have pre-
pared labelled tweets for action types such as “Deliver” (312), “Cancel” (306),
“Return” (318), “Payment” (317) and “Purchase” (307) to train the SVMmodel.
The labelled data is balanced to have unbiased training data. The n-grams from
nouns, verbs and adjectives of each tweet sentences were extracted. Stop words
were removed and verbs were converted to present tense. The vector is extracted
for each word of the n-grams and averaged to calculate the message vector. The
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message vector has labelled action types that are used to train SVM machine
learning model. The SVM model is used to score the evaluation data. The thresh-
old 60% is considered for SVM score to find action types based on experiment
to have better precision and recall.

The results show that action2vec model has better F-measure for “Deliver”
(82%), “Cancel” (71%) and “Payment” (77%) comparing to the SVM model.
This confirms that unsupervised method action2vec has similar results compar-
ing to supervised machine learning approaches. Figure 4 outlines the precision,
recall and F-measure numbers for both action2vec and SVM.

7 Integration with collaboration tool

The action type extraction from short messages can be helpful in the workplace
environment. In this context, workers are typically engaged with multiple, con-
current tasks from di↵erent projects and workflows. The automatic extraction of
actions from conversations can help workers as an alert/notification mechanism
that contribute to avoid unnecessary delays in the corresponding processes and
increasing their productivity.

We have integrated our action type extractor in a state of the art collabo-
ration tool: Slack. Slack is a team messaging application widely used nowdays
in the workplace to facilitate inter- and intra-communication in organizations.
Our action type extractor was implemented as a Slack channel that extracts
actions from text. Here, if a user enters a text in the conversation channel it will
be compared with our action2vec model for computing a similarity ratio. The
action type extractor then selects an action type based on similarity ratio and
provides a relevant action type for the given text. For example, if a user asks
“why does amazon take my money but then cancel my order?”, the action type
extractor identifies the action type “Cancel”.

8 Conclusion and future work

We have explored the action type extraction problem on short text conversation
data from collaboration tools. The unsupervised method introduced in this pa-
per for action type extraction helps to train models with large amounts of data.
It avoids data labelling, which is one of the major issues found in existing ap-
proaches for training large text data. We have evaluated the trained action2vec
model with an initial seeds vector. The large set of training data is helpful to
improve the model. Our action2vec model is compared with an SVM-based ma-
chine learning approach. The results show that action2vec model is comparable
to the supervised counterpart. Our unsupervised action type extraction method
is adaptable and can be extended to other action types and domains. To show-
case our proposed solution, we integrated the action type extractor with Slack to
provide assistance to workers in extracting action types. In future work, we will
collect user feedbacks and apply deep learning algorithms to update the model
in near real time.
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