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Abstract. Communities of Question Answering (CQAs) are rapidly
growing communities for exchanging information in the form of ques-
tions and answers. They rely on the contributions of users (i.e., members
of the community) who have appropriate domain knowledge and can
provide helpful answers. In order to deliver the most appropriate and
valuable answers, identification of such users (experts) is critically im-
portant. However, a common problem faced in CQAs is that of poor ex-
pertise matching, i.e., routing of questions to inappropriate users. In this
paper, we focus on Stack Overflow (a programming CQA) and address
this problem by proposing an embedding based approach that integrates
users’ textual content obtained from the community (e.g., answers) and
community feedback in a unified framework. Our embedding-based ap-
proach is used to find the best relevant users for a given question by
computing the similarity between questions and our user expertise rep-
resentation. Then, our framework exploits feedback from the community
to rank the relevant users according to their expertise. We experimen-
tally evaluate the performance of the proposed approach using Stack
Overflow’s dataset, compare it with state-of-the-art models and demon-
strate that it can produce better results than the alternative models.

Keywords: Experts Finding · Question and Answering Communities·
Embeddings Models· Stack Overflow· Expert Representation.

1 Introduction

Following the boom of web 2.0 technologies, there has been a dramatic increase
in the number and variety of knowledge sharing communities. One such commu-
nity is the Community Question Answering (CQA), which imparts knowledge
in the form of questions and answers. Some of these communities are open to
general discussions (e.g., Yahoo Answers1), whereas others (e.g., Stack Overflow
(SO)2) are specialized communities focusing on technical knowledge (SO, in par-
ticular, focuses on programming knowledge). The goal of these communities is to
provide accurate and timely answers to questions posted by users of the platform

1 https://answers.yahoo.com/
2 https://stackoverflow.com/
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supporting the communities. Achieving this goal entails the recommendation of
the question to the right user (answerer) for which knowledge and expertise in
the question’s topic is essential. The process that identifies such user is called
Expert Identification [22] and involves finding a skillful and knowledgeable user
that can answer a given question. Unlike general CQAs, specialized communities
not only require more technical skills but also demand various levels of expertise
on specific topics in order to provide answers with long lasting relevance for the
community [1].

Despite the success, CQAs face a number of problems and challenges that
are still far from being solved. Among them, poor expertise matching [21] is one
of the most significant problems. Poor expertise matching implies that a new
question may not be matched with the appropriate user who possesses the ex-
pertise to correctly answer the question. This may result in answers either being
given incorrectly, scammed or not given at all [19]. To address this problem, a
wide range of models have been developed, among them the well known proba-
bilistic language models [3], which estimate users expertise from their relevant
documents based on co-occurrences. Here, the answers provided by users are con-
sidered to be the reflection of their expertise [16]. Although, these approaches
have achieved reasonable performance, they are prone to term mismatch prob-
lems [11] between search queries and documents (or questions and experts, in
the context of CQAs). Topic models, such as Latent Dirichlet Allocation (LDA)
and its variants [4], have been introduced thereafter to overcome this problem
by capturing the latent semantic relationship between users and their queries
(see, e.g., [21]). These approaches, however, do not perform well when dealing
with short-text documents (which is typically the case for posts in CQAs) where
only limited word co-occurrence instances can be found [20].

In order to address these limitations, in this paper, we focus on the specialized
community of SO and propose a framework for better representation of user
expertise that leverages on word embedding techniques [17]. This framework
not only makes use of textual content as evidences of user expertise within the
community, but it also leverages the community feedback and interactions of
users with one another to better match user expertise for routing questions. In
a nutshell, the contributions of this paper are as follows:

– We propose an effective framework for representation of user expertise via
word embedding techniques applied on the content of their contributions. We
furthermore leverage on community feedback in order to rank users based
on their contributions and performance within the community.

– We build our own word embedding model from SO’s corpus to better capture
domain-specific semantics within this community.

– We evaluate the performance of our proposed solution through experiments
on SO’s dataset and by comparing it with state-of-the-art models.

The rest of the paper proceeds as follows. The problem statement and the char-
acteristics of SO platform is introduced in Section 2. Section 3 explains the
framework for our proposed approach. The experiments and evaluations are pre-
sented in Section 4. Related work is given in Section 5, and, finally, Section 6
concludes the paper with ideas for future work.
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2 Preliminaries

This section formally presents the problem statement and provides background
information to better understand the different Q&A elements and mechanisms
in SO’s platform.

2.1 Problem Statement

Given a question Q, our goal is to find a set of experts U that best match to the
required skills and domain knowledge to answer Q.

Definition 1. Experts in CQA [16]. Given a new question Q on topic X, a
user can be considered as an expert to answer Q if he/she has already answered
a set of similar questions Y = {y1, y2, ..., yz} in the past. In addition, his/her
expertise can also be inferred from his/her behavior and interactions within the
community.

More specifically, if we are given a new question Q and n number of users
U = {u1, u2, ..., un} having a set of m answer posts P = {p1, p2, ..., pm}, our
goal is to find a set of k users U = {u1, u2, ..., uk} capable of answering Q. To
be aligned with the definition of experts in CQA, we consider the users’ answers
as an indicator of their expertise on the question’s topic and estimate their
performance through community feedback.

As we will explain in the following section, our work leverages on users’
textual content (i.e., answers) to match questions and experts. Therefore, a key
challenge we face is the representation of user expertise for matching the newly
posted question and users (experts) using a content-based method [16]. Given
that SO is a focused programming community, unlike general CQAs (such as
Yahoo Answers), it requires sufficient technical expertise for a user to answer a
question. Keeping this in view, the second challenge entails quantifying the level
of expertise of users.

2.2 Stack Overflow

SO is an interactive knowledge sharing platform in the area of computer pro-
gramming and software development. It managed to get the attention of a large
audience with nearly 8 million users and 41 million posts (25 million answers and
16 million questions)3. Users in SO interact by asking and answering questions
as well as editing and commenting on posts in order to curate content. Similarly,
they acknowledge the most helpful answers by up/down voting and expressing
their opinion on the quality of posts. SO also incorporates a reputation system
that reflects the users’ activities and their engagement toward contributions that
encourage users’ participation.

As an example, Figure 1 illustrates the different elements of a Q&A post in
SO. The asker posts a question that consists of three parts: (i) title, (ii) body
and (iii) tags. The title of a question is a short description of the essence of the
question, whereas the body explains the question in more details. A tag (which
can be considered a metadata) provides a glimpse into the topic of the question.

3 https://insights.stackoverflow.com/survey/2018/
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Fig. 1. An example of Stack Overflow Q&A post.

The example question in Figure 1 has two tags, JavaScript and URL, which
indicates that the question is related to JavaScript and URLs. Users provide
different answers according to their knowledge and expertise (20 answers for
our example question). Moreover, the asker can accept one answer among all
answers, which is typically referred to as the best answer. Furthermore, other
users can also up/down vote questions and answers. Such feedback mechanisms
are built upon the important concepts of trust and reputation [1], which allow
SO to associate reputation scores and badges to users4.

3 Representing Users Expertise and Recommending
Users to Questions

This section presents our proposal for representing user expertise and recom-
mending users to questions. Given the nature of the contributions in SO (which
is made mainly of textual content), the key intuition behind our proposal is that
we can leverage on such contributions to derive a suitable representation for user
expertise. As we will discuss next, we leverage on state-of-the-art techniques to
embed such expertise into a vector space that can be later used to match users
with questions. The framework for our proposed solution is outlined in Figure 2
and consists of two main phases:(i) user expertise representation, and (ii) user
recommendation. We discuss the details of each of these phases next.

3.1 User Expertise Representation

A key requirement for a good matching of user expertise and a new question
consists in having a good representation of the expertise of users participating
in a CQA. In this phase, users’ answers and their expertise are represented by
using embedding models [14], which form the basis for capturing the semantic
relationship between a new question and users expertise. Word embeddings stem

4 https://stackoverflow.com/help/whats-reputation
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Fig. 2. Overall framework for our proposed solution.

from the distributional hypothesis [17], which states that words occurring in
similar contexts tend to have similar meanings. This is a powerful property
that have been leveraged in the literature to develop robust semantic similarity
techniques in various domains [8]. In the following, we describe step-by-step
how our framework (see Figure 2) leverages on this property for user expertise
representation in CQAs.

Posts Collection and Filtering. The first step in our framework involves
the collection of Q&A posts from SO. The collected posts are filtered based on
two requirements: (i) already resolved posts (i.e., question with answers), and
(ii) having accepted (best) answer marked by the question poster. The purpose
of this early filtering is to filter out low quality posts and reduce noise in the
dataset.

Pre-Processing Computations. Pre-processing is an essential step that trans-
forms raw text into a format suitable for further processing. In Step 2 of our
framework, we apply standard Natural Language Processing (NLP) techniques5,
which include HTML tags removal, tokenization, stop words/frequent words re-
moval and lemmatization. Apart from standard text processing, we also take
special consideration to retain the symbols that are meaningful in the context of
programming such as & and $. For example, the symbols associated with C++
and C# are key to differentiate the two programming languages.

Retrieving Users’ Posts. In our approach, our assumption is that users post-
ing answers to questions can be considered knowledgeable on the question’s topic.
We therefore represent users’ expertise in CQAs through their answers. In order
to do so, after pre-processing, Step 3 retrieves posts from each user (see, e.g.,
P = {p1, p2, ..., pm} in Step 3 of Figure 2). Here, the selection of users/answers
are also based on satisfying specific criteria, i.e., (i) users with at least one best
(accepted) answer, and (ii) answers with score (upvotes - downvotes) of 5 or

5 https://www.nltk.org/
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more (users with high expertise get high score/votes for their answers [7]). This
step filters out users with low quality posts.

Keywords Extraction. Step 4 involves taking answer posts from users and
decomposing them into a set of keywords {k1, k2, ..., kq} with the help of a part-
of-speech tagger6. It is important to note that, unlike other CQAs, users’ answers
from programming CQAs usually contain massive code snippets. Filtering out
such codes snippets during the pre-processing stage results in a very sparse set
of keywords for each post. In order to deal with this problem, we combine the
keywords from a post with tags (associated to the post) and their description
for better representation (tags in SO come with their own description). This
enriched set of keywords is then used to represent users in an embedding space
as explained next.

User Embeddings. Following keywords extraction, Step 5 in our framework
consists in representing users via these keywords with proper semantic embed-
dings/vector representation, which will be used in the next phase to capture the
semantic similarity between a question being asked and users’ expertise. The
vector representation can be computed in various ways. One popular technique
is the vector space model [2], which considers users’ answers as a bag of words
and uses occurrences count of words as features. A typical problem with this
model is that it classifies semantically similar words such as car and automo-
bile differently [26]. To avoid this problem, we employ embedding-based models
that utilise the (contextual) co-occurrences of words to represent them in a lower
dimensional vector space and capture their contextual and semantic relationship.

More specifically, to compute the vector representation
−→
U for each user ex-

pertise, we first learn a vector representation of words from SO’s corpus using
Word2Vec Skip-gram model [17]. The Skip-gram model uses a neural network
architecture to learn distributed word embeddings. This enables the prediction
of the surroundings of words in associated context(s) from a corpus. We trained
this model on SO’s full dataset (more details is given in experimental section)
to obtain domain-specific word embeddings vw for each word w in SO’s corpora.
Using this word embedding model, denoted by WE , we then generate each user

expertise embedding
−→
U . To do so, we make use of vectors averaging and weighted

vectors averaging as discussed next.
Vectors Averaging (VecAvg). A simple yet powerful way for text representa-
tion through embeddings consists in aggregating its individual word embeddings
through sum or averaging [8]. In this work, using WE , we compute the average
of the word vectors of each keyword ki ∈ Kui in the user’s answer post to obtain
the semantic representation of users’ expertise. That is, for each user uj , we
compute:

−→
Pm =

1

q

q∑
i=1

e(ki) (1)

where
−→
Pm is the vector representation of user uj ’s answer post, q is the number

of keywords obtained from the post and e(ki) is a function that obtains the

6 https://nlp.stanford.edu/software/tagger.shtml
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embedding of keyword ki ∈ Kuj from WE (notice that, for simplicity, the right
hand side of Eq. (1) is represented as function E(k1, k2, .., kq) in Step 5 of Figure

2). Similarly, the vector representation
−→
Uj for users can be obtained by averaging

the vectors of all their answer posts.
Weighted Vector Averaging. The vector averaging method above considers all
keyword in an answer post as equally important, which leads to vector represen-
tations of users’ expertise that ignore the role that certain keywords play within
an answer. To address this limitation, we use the weighted vector averaging
method. Here, weights are assigned to each keyword to reflect their importance
in an answer post. In this work, these weights are determined by the IDF (In-
verse Document Frequency) weighting scheme [6]. The IDF is computed as the
inverse of the number of user posts that contain a specific keyword, i.e.,

IDFk = log
m

PCk
(2)

where IDFk is the IDF of keyword k, m is the total number of answer posts
of a user uj and PCk represents the number of answer posts containing key-
word k. Thus, the weighed vector averaging not only leverages on the distribu-
tional semantics of word embedding techniques but also takes into consideration
the information about the distribution of keywords appearing in different user

posts. The actual computation of a users’ expertise representation (
−→
U ) using

this method can be obtained by weighting the embedding of each keyword k in
Eq. (1) by the corresponding IDFk obtained through Eq. (2).

3.2 User Recommendation

This phase of our framework aims to route a newly posted question to users
that are expert on the topic of the question. We achieve this in two steps: (i)
similarity computation, and (ii) user ranking via statistical features.

Upon receiving a new question Q, phase-II performs similar pre-processing
and keyword extraction steps as given in phase-I. Then, it leverages WE to

generate a vector
−→
Q for the given question using the vector averaging method,

which is used for similarity computations as detailed next.

Similarity Computations. After learning the vector representation of users’

expertise
−→
U and question

−→
Q , we compute the similarity score sim(Q,U) via

cosine similarity [26], which is defined as follows:

sim(Q,U) =

−→
Q.
−→
U

|
−→
Q ||
−→
U |

(3)

The closer the value of the cosine similarity to 1, the greater the relevancy of the
new question with the users’ expertise. This similarity computation is done for
each user uj , which results in a ranked list of users Us, such that Us ⊂ U and:

Us = sim(Q,U) (4)

Here, the rank in Us is determined by the results of the cosine similarity. Next,
we show how we employ statistical features to further improve this ranking.
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Users Ranking via Statistical Features. In addition to domain knowledge,
the expertise of users can also be inferred from their activities and behaviour
in CQAs. These activities comprise different signals based on user performance,
reputation and impact in the community. Table 1 presents a list of statistical
features from SO that can be used as expertise indicators. We consider all these
signals and features in our work as given in [12]. The key intuition behind this
choice is that expertise can be defined collectively by a set of indicators on the
platform that capture the characteristics of users indicating their expertise on a
given topic. We elaborate more on these features next.
Activity features. These are features related to users’ activities on the platform.
Prior research [10] has shown that this set of features is useful in finding experts.
For example, the best answers measure is an indication of a user being an ex-
pert in that domain area. Another example includes the z-score z(q, a) = a−q√

a−q
measure introduced in [23], where q and a are the number of users questions and
answers, respectively. This score combines users’ asking and replying patterns
with the intuition that asking a lot of questions often indicates the lack of ex-
pertise on some topics and vice versa.
Community features. This set of features shows how much the community trusts
an answerer. Feedback from the community indicates the quality of users’ contri-
butions [7]. Intuitively, users with high reputation get more votes for their posts
as compared to others. Similarly, badges are given to users to reward them for
their contributions once they reach a certain threshold.
Time-Aware features. We also include this feature to observe user activities over

Table 1. Set of features comprising different signals from platform.

Features Set Features
Activity(A) Number of questions, number of answers and number of

accepted answers, z-score computation
Community(C) Number of badges/awards, number of page views, number

of favourites, total reputation and average answers score
Time-Aware(T) Time interval (days between joining and n-th best answers)

and average answers time

a period of time. One sample feature in this category includes the days between
a user a joining the community and his/her n-th best answer.

We leverage on the statistical features introduced previously and apply dif-
ferent linear combinations of these features. More formally, the aim is to rank
a user with respect to his/her level of expertise and knowledge through his/her
performance in the community. To do so, an expertise score exp(Q,Us) of each
user in Us for a question Q is computed as follows:

exp(Q,Us) = α(A) + β(C) + γ(T ) (5)

where α, β and γ are weights that range from 0 to 1. These weights distribute
the importance of activity, community and time-aware features in determining
the expertise of users.

We briefly describe the usage of these features in our work next. The level of
user expertise is derived from Eq. (5) by aggregating the features given in Table 1.
A is an aggregation of user activity features. More concretely, A(Q,Us) = x+ y
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where x computes the acceptance ratio of a users’ answers, i.e., x =
B(AQ)
AQ

.

Here, B(AQ) represents the number of a user’s best answers and AQ is the total

number of his/her answers. Similarly, y quantifies the z score ( a−q√
a−q ) introduced

previously. Intuitively, a high z score indicates a high knowledge of the user
of the topic related to Q. Likewise, community features represent the influence
of a user in the community and it is expressed as C(Q,Us) = p + q + r +
s. Where p represents the number of badges a user received, q combines the
number of favourites with number of page views of a user’s posts, r computes
user reputation relative to the overall reputation in the community, and s is
the average answer score of a user. The time-aware feature (T ) is another factor
that indicates user expertise over a period of time, with the intuition that expert
users take less time in answering questions. Here, T (Us) = tba + tavg, where tba
is the number of days between user joining the community and the n-th best
answers, and tavg is the average answer time of a user. The less time the user
takes in answering questions, the greater the expertise of the user.
Recommendation Score. The last step in our framework is to recommend an
appropriate set of users to answer a question Q. Hence, a recommendation score
is calculated based on the user relevance and expertise to Q. More precisely, we
integrate the Eq. (4) and (5) to get the final ranking of users as:

R(Q,Us) = ψ(Us) + (1− ψ)exp(Q,Us) (6)

The first term in Eq. (6) deals with the contribution of a user relevance to a
question Q whereas the second term is the contribution of user expertise in
relation to Q. Here, ψ is a weight in the range [0, 1] showing the importance of
the terms in Eq. (6) in recommending expert users for answering Q. In the end,
this step returns top−k expert users in decreasing order of their recommendation
score, i.e., U = {u1, u2, ..., uk}. Here, the user with the highest score (i.e., best
ranked) is the best user to answer the given question.

4 Experiments
This section evaluates the performance of our proposed approach through a set
of experiments with the aim of answering the following research questions:
RQ1 : How effective is our proposed approach for experts representation via
embedding models in question-to-expert matching?
RQ2 : What is the impact of the statistical features employed in our approach
in improving question-to-expert matching?

4.1 Experimental Setup

We run our experiments using real data from SO. In the following, we provide the
details of our experiments, which includes data preparation, parameters setting
along with models and metrics used for comparison purposes.

Data Preparation. We first start with the details regarding data preparation.
We describe next the dataset, ground truth and test data used for experimenta-
tion purposes.
Dataset. The subset of data is obtained from SO’s dataset7 covering the period
from August 2008 to August 2018, which consists of posts tagged by Java and

7 https://archive.org/details/stackexchange
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its co-occurred tags (Java Script, HTML, etc.). Java tag has the highest ratio
of Q&A posts in our dataset, and thus covers a large amount of data with
3,345,038 posts. As stated earlier in Section 3, the selection of users and posts
are based on certain requirements: Firstly, we prune questions with no answers,
which results in 2,904,208 posts. Secondly, we extract only the stabilised posts.
Stabilised posts refer to resolved questions which have an accepted (best) answer.
Similarly, users are also selected based on two criteria: (i) the user has at least
one best answer, and (ii) his/her reputation score in the community must be
more than the average reputation in the community. Furthermore, only answer
posts with a score of 5 or more are selected. In the end, our dataset consists of
778,418 posts and 54,851 users.
Ground Truth. As for the ground truth for our approach, we make use of heuris-
tics instead of manual labeling, as the latter does not scale well with the sheer
amount of data. Following the experimental settings given in [10] for ground
truth, we also define users expertise based on their accepted (best answers). A
user is considered as an expert if: (i) he/she has at least ten or more accepted
(best) answers, and (ii) his/her answers’ acceptance ratio as well as their repu-
tation score must be higher than the average user ratio on the platform. Thus,
following these heuristics, the ground truth is made of users that have shown
expertise on the topics corresponding to the answered questions.
Test Data. We prepare two different test datasets to carry out our experiments.
The first one consists in a collection of Java unanswered questions (so the training
and test data do not overlap), while the second one comprises randomly collected
questions related to Java with actual best answerers.

Parameters Setting. To obtain domain specific embeddings, we trained our
own embedding model instead of making use of already available pre-trained
model over general dataset such as Wikipedia8. For instance, the domain spe-
cific word “cmd” (typically, short for “command”) might not be available in the
general trained model. Similarly, a word such as “Python” has different contex-
tual meaning in software engineering vs. other domains. The parameters required
to train this model are set as follows: The vector dimension to 200 and a sliding
window for word co-occurrences to 5. In addition, a minimum word count set
to 20 means that a word must occur at least 20 times in the training set. This
setting of parameters gave best performance in term of matching accuracy.

Environment and Implementation. This work is implemented in Python 3
and experiments are conducted on a Linux machine with Intel Xeon 2.80GHz
CPU and 16GB memory.

Performance Comparison. In order to demonstrate the effectiveness and
matching accuracy of our approach, we compare it with the following models.
Language Model (LM) [3]. It is a classical language model for expert finding,
which considers documents associated with users as their expertise. We use Je-
linek Mercer (JM) smoothing with parameter λ= 0.25 for experiment purposes.
Latent Dirichlet Allocation (LDA) [4]. LDA is an unsupervised generative prob-
ability model that represents documents into a latent semantic space and then
extracts topics. We use LDA to extract the topic vectors of users’ answers and
then compute the cosine similarity to match with the given question. The num-
ber of topics is set to 100 for this purpose.

8 https://github.com/3Top/word2vec-api
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Latent Semantic Indexing (LSI) [9]. LSI is essentially a bag of words and is used
to identify the similarity between queries and user expertise.
Document Representation (Doc2vec) [14]. Doc2vec is an extension of word2vec
[17]. It is based on the distributed bag of words representations to extend the
learning from word to word sequences. In this paper, we use the distributed bag
of words idea to learn vectors directly by predicting all words in the answers.
To be aligned with word level representation, we use the same hypermeters as
of word2vec model with a sample size of 1e5.
Word Movers Distance (WMD) [13]. WMD is the minimal cumulative distance
between words of two documents. It retrieves word vectors from pre-trained
word embedding model and considers each text document as a normalised bag
of words. The weight of each word is considered as the number of times the word
occurs in the document. The high occurrences show the importance of each word
in that document. This approach does not require any hypermeters.

Evaluation Metrics. We evaluate the performance of our proposed solution
based on one of the most used information retrieval measures for expert finding
[3] and question routing in CQA [24], i.e., P@N(precision at N). It measures
the percentage of relevant users/experts found at the top N retrieved results.
More specifically, it is the ratio of the number of relevant users @N to the total
number of users until N . For example, if our system returns 10 users for a given
Q, where the relevant users are ranked at 1,5,6 and 9. Then P@5 is 2

5 in this case.
We also use Mean Averaged Precision (MAP), which is the average precision of
all precisions for all test questions. Besides this, a user can also be ranked via the
metric Success@N (S@N) introduced in [15] for finding the best answerers. If
a system returns the actual best answerer for a given question, then prediction
is successful. Otherwise, it is not. For a test question, if the best answerer is
among the top N experts returned by the system, then the value of the S@N is
the reciprocal rank (RR), i.e., 1/N . From here, we can also calculate the Mean
Averaged Reciprocal (MRR) across multiple questions as follows:

MRR =
1

|M |

|M |∑
i=1

1

Ranki
(7)

where |M | is the number of questions and Ranki is the position of the best
answerer in the ranked list returned by the system for the i-th question.

4.2 Results and Discussions

RQ1: Effectiveness of Embedding Models. The first set of experiments investi-
gates how well users’ expertise matched a given question using embedding mod-
els. The performance of different models in terms of precision@N and MAP is
summarised and reported in Table 2. It is interesting to note that the simple
word level representation, i.e., VecAvg, achieved better performance over others
in terms of recommending relevant experts. LSI and LDA have also achieved
reasonable performance. Despite this, the embedding models outperformed both
of them. Overall, results suggest that simple word level representation works
better in representing user expertise and routing questions.
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Table 2. Performance comparison of different methods.

Method P@1 P@5 P@10 MAP
LM 0.36 0.34 0.36 0.43
LSI 0.40 0.36 0.30 0.53
LDA 0.50 0.36 0.34 0.45
Doc2Vec 0.60 0.41 0.38 0.56
WMD 0.50 0.44 0.35 0.56
VecAvg 0.60 0.48 0.42 0.62
Weighted VecAvg 0.60 0.45 0.44 0.63

RQ2: Effect of Statistical Features. The second research question explores the
importance of statistical features in ranking a user. For this purpose, we eval-
uate the performance of our approach through MRR for best answerers pre-
diction and list the results in Table 3. The MRR(R) measure in Table 3 ranks
users based on the relevance between their answers and questions (see Eq. (4)).
Whereas MRR(S) make use of statistical features and combines the user rele-
vance with expertise to rank them accordingly (Eq. (6)). The larger the value for
these metrics, the better the performance of the corresponding technique. It can
be observed from the results that there is a small improvement in the ranking
using the expertise indicators. These results show that the usage of expertise
indicators improves user ranking, and thus, the prediction of best answerers for
a given question.

Table 3. Best answerer prediction.

Method MRR(R) MRR(S)
LM 0.041 0.045
WMD 0.154 0.155
VecAvg 0.161 0.163

Discussions. The results reported in Table 2 and 3 show that expertise rep-
resentation via embeddings indeed produce better results w.r.t. the more tra-
ditional techniques of LM, LSI, LDA and WMD. When considering P@1, the
embedding models outperform their counterparts by approximately 20% (WMD)
to 67% (LM). When comparing performances w.r.t. the usage (or not) of statis-
tical features, we can see modest improvements across the representative models
in Table 3, ranging from 1.2% (VecAvg) to 9.8% (LM). Overall, these results are
promising and encouraging, and opens up new opportunities for further research
into this direction.

The experiment reported in this work comes with its own limitations. Firstly,
we used only a subset of SO’s dataset (focused only on Java-related posts), which
limits our ability to generalize our conclusions to the whole platform (and for
all topics in SO). Secondly, given the lack of a labeled dataset for expertise
in SO, we relied on heuristics to determine the expertise of users. While this
is a best-effort attempt to cope with such issue, the heuristics we used have
proven useful also in previous work [10]. Finally, we trained our word embedding
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model (with Word2Vec) only on SO’s dataset. More robust embeddings could be
obtained by considering additional corpus from other sources such as Github9

and programming-related wikis and forums.

5 Related Work

The concept of expert finding has been well-studied in information retrieval
and knowledge management [22]. More recently, an increased attention has been
given to the analysis of CQAs. As a result, many algorithms and models have
been employed that can be categorised into three types: Graph based, content
based and deep learning based approaches.
Graph based approaches. These approaches are based on graph analysis.
They are built upon underlying interactions among users in the community [18]
to understand their activities. An early work in this direction was introduced
[23] for the online help seek community to find people who can provide helpful
answers. For this purpose, they applied network algorithms such as PageRank
[6] to estimate relative expertise of users from their interactions. Similarly, [5]
proposed a model called InDegree that considers the number of best answers
provided by users as an expertise indicator. The higher the degree of a user,
the more likely he/she is an expert. These approaches, however, are based only
on user interactions in the community rather than their textual contents as an
evidence of their expertise. Thus, graph based approaches are helpful in finding
the influential users in the community but not the topical expertise.
Content based approaches. Content based approaches usually consider ex-
pert finding as an Information Retrieval problem. For example, seminal works
like [3] on probabilistic language modeling technique consider documents asso-
ciated with users as the reflection of their expertise. In the context of CQAs,
questions being asked can be considered as queries, while answers provided by
users are considered the reflection of their expertise [16]. Here, the need for an
exact overlap between query and document terms leads to a vocabulary gap
problem. Topic modeling [4] based approaches, such as [21], address this prob-
lem by incorporating semantic similarity to discover the latent topics in contents
of question and identifies the interests of users. Compared to language models,
topic modeling achieves better performance in terms of retrieving expert users.
Despite the improved performance shown by content based approaches, it is
usually difficult to decide which features are to be used for a specific dataset.
Moreover, these methods require more efforts and time due to the excessive de-
pendence on handcrafted features. Therefore, more recently, increased attention
has been given to deep learning techniques.
Deep Learning based approaches. Deep learning approaches have been
widely used primarily for their effectiveness and promising results with little
human involvement in feature selection and engineering. Work in the context
of expert finding was introduced by [25], which leverages the textual contents
and social interactions among users for better similarity matching. Their method
utilises DeepWalk for social relations and Recurrent Neural Networks (RNNs)
for modelling users relative quality rank to questions. Similar to this work, [24]
proposed a framework, which models questions, answers and users as a hetero-
geneous network and trains a deep neural network on random walks to enhance

9 https://github.com
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matching. A very recent work [26] makes use of the Convolutional Neural Net-
work (CNN) for expert identification in CQAs. Their approach combines ques-
tion and user representations for finding questions that are similar to a given
question. The user representations in their framework is build up using DeepWalk
and word embeddings are used to represent questions. [19] proposes an approach
that not only addresses the problem of matching degree between users’ expertise
with the query but also the likelihood of an expert to answer the query after
inviting him/her to do so.

There is also a large body of work addressing the same problem in other pro-
fessional communities such as LinkedIn10. For example, [12] focuses on determin-
ing the topical expertise based on the skills dataset available within the company.
Similarly, expert finding is also studied in bibliographical information networks
[26] to mitigate the vocabulary gap problem by introducing locally trained em-
bedding with network ranking algorithm. Unlike the approaches above, in our
work, we combine content- and embedding-based techniques along with statis-
tical features stemming from both user activities and feedback provided by the
community (crowd).

6 Conclusion
In this work, we apply the state-of-the-art embedding models for representation
of users’ expertise to address the problem of poor expertise matching in CQAs.
The key of our approach is the use of user content as well as community feedback
in formulating their expertise. Firstly, we introduce the embedding models that
map the newly posted question and users’ contents into low dimensional seman-
tic space and then relevance between them is computed via cosine similarity.
Secondly, we take the advantage of the community feedback from the platform
and incorporate it as an expertise indicator that helps rank the relevant users
according to their level of expertise. We performed extensive experiments on
Stack Overflow’s dataset and compared the results with previous models. The
experimental results show that our proposed framework outperforms the previ-
ous models and baseline approaches in terms of routing questions to experts.
In future work, we would like to extend the proposed approach for expert repre-
sentation to heterogeneous data sources combining, e.g., Stack Overflow, Github
and other programming communities.
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