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Abstract. The huge data breaches and attacks reported in the past
years (e.g., the cases of Yahoo and Equifax) have significantly raised
the concerns on the security of software used and developed by com-
panies for their day-to-day operations. In this context, becoming aware
about existing security vulnerabilities and taking preventive actions is
of paramount importance for security professionals to help keep soft-
ware secure. The increasingly large number of vulnerabilities discovered
every year and the scattered and heterogeneous nature of vulnerability-
related information make this, however, a non-trivial task. This paper
aims at mitigating this problem by making security vulnerability infor-
mation timely available and easily searchable. We propose to enrich and
index security vulnerability information collected from publicly available
sources on the Web. To make this information easily queryable we pro-
pose a natural language interface that allows users to query this index
using plain English. The evaluation results of our proposal demonstrate
that our solution can effectively answer questions typically asked in the
security vulnerability domain.

Keywords: Security Vulnerability · Indexing · Natural Language Inter-
faces · Information Integration

1 Introduction

In July 2017, one of the most notorious cyber security attacks was discovered
in Equifax’s dispute portal servers, which resulted in a breach of personal infor-
mation of approximately 145 million individuals3. The attack was possible due
to a known and unpatched vulnerability found in their servers running Apache
Struts (https://struts.apache.org). Reports4 estimate a breach-related cost of
$439 million through the end of 2018.

3 https://www.gao.gov/assets/700/694158.pdf
4 https://www.reuters.com/article/us-equifax-cyber/equifax-breach-could-be-most-

costly-in-corporate-history-idUSKCN1GE257
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While events like these have significantly raised the concern regarding soft-
ware security, the ever increasing reliance on software systems to support busi-
ness operations and the rising numbers of new vulnerabilities reported every
year make the task of keeping software systems secure a very difficult one [19].
Recent cybersecurity reports5 show that in year 2017, approximately 21,000 vul-
nerabilities were discovered and reported. This value is 31% larger than what was
discovered in the year before. Furthermore, as of mid-2018, more than 10,000 vul-
nerabilities were disclosed6, of which 16.6% have high severity scores (CVSSv27)
ranging between 9 and 10.

In order for security professionals to become aware and informed about se-
curity vulnerabilities, an integrated access to such information is needed. How-
ever, while much of the security vulnerability information is publicly available
(e.g., Vulners (https://vulners.com), NVD (https://nvd.nist.gov) and OWASP
(https://owasp.org)), such information is in many cases scattered across differ-
ent, heterogeneous and complex information silos that have low or no integration
[7]. For example, while NVD provides a curated and uniquely identified list of
vulnerabilities, finding the list of software affected, exploits and patches for a
given vulnerability requires in most cases querying separately multiple, disparate
sources. Moreover, accessing such information may require different forms of
query mechanisms including manual keyword search, the use of domain-specific
languages (DSLs), REST API calls, among other mechanisms.

This paper aims at mitigating the problems above by providing an integrated
source of vulnerability information that leverages on publicly available informa-
tion about security vulnerabilities. More specifically, we propose to leverage on
multiple, heterogeneous and complementary sources, which we further enrich us-
ing state-of-the-art Knowledge Graphs (KGs) [17] and vector representation of
words (word embeddings) [12] to enable a richer representation of vulnerability
information. Such integrated and enriched information is thus capable of not
only providing information about vulnerabilities alone, but also affected soft-
ware and vendors, associated exploits, attacks and patches, which jointly can
help understand and mitigate the risks posed by security vulnerabilities. In or-
der to overcome the complexity of querying such heterogeneous information, we
propose a Natural Language Interface (NLI) that allows security professionals to
seamlessly query security vulnerability information. Such NLI does not require
learning ad-hoc languages for query purposes, nor it needs familiarity with the
underlying information schema. In summary, the contributions of this paper are:

– We propose an approach and architecture to (i) collect and integrate secu-
rity vulnerability information from multiple, heterogeneous and disparate
sources, (ii) enrich the integrated information with existing KGs and word
embeddings, (iii) index such information, and (iv) query with support for
natural language (NL) expressions.

5 https://pages.riskbasedsecurity.com/2017-ye-vulnerability-quickview-report
6 https://www.riskbasedsecurity.com/2018/08/more-than-10000-vulnerabilities-

disclosed-so-far-in-2018-over-3000-you-may-not-know-about/
7 https://www.first.org/cvss/v2/guide
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– We devise an NLI that is able to translate NL expressions into queries that
are executable by the underlying index and search engine.

– We evaluate our proposed approach and demonstrate that our solution is able
to effectively answer questions typically asked in the security vulnerability
domain using NL queries.

The rest of the paper is organized as follows. Section 2 discusses related work.
Section 3 presents the security vulnerability information model used for our in-
dex. Section 4 presents our architecture and discusses the collection, enrichment
and indexing of security vulnerability information. Section 5 discusses how NL
queries are translated into the underlying search engine’s query language. Next,
Section 6 presents the evaluation of our proposal. We conclude the paper with
Section 7.

2 Related work

We explore related work from two perspectives that are key to our work: Security
vulnerability information sources and information querying with NL support.

Security Vulnerability Information Sources. The cybersecurity domain
have traditionally relied on multiple sources when it comes to inquiring about
security vulnerabilities. One of the most widely used sources is the National
Vulnerability Database (NVD) (https://nvd.nist.gov), a U.S. government repos-
itory of security vulnerability information. NVD provides a list of vulnerabil-
ities dating back to year 1988, where each vulnerability is uniquely identified
by its CVE ID (Common Vulnerabilities and Exposures). Another example is
the Zero Day Initiative or ZDI (https://www.zerodayinitiative.com), which al-
lows security researchers to privately report 0-day vulnerabilities to vendors.
Vulnerabilities are collaboratively made public by ZDI and the affected ven-
dor through a joint advisory. Other useful sources of vulnerability-related infor-
mation include security bulletins and advisories created and managed by ven-
dors. Examples include Mozilla’s security advisory (https://www.mozilla.org/en-
US/security/advisories/), Redhat’s product security center (https://access. red-
hat.com/security/) and the Apache Security Team (https://www.apache.org/
security/). Further sources exist that provide useful archives of exploits (https://
www.exploit-db.com), breach reports (https://breachlevelindex.com), vendor-
specific patches (https://portal.msrc. microsoft.com) and crowd-sourced vulner-
ability reports (https://www.hackerone.com). Vulners (https://www.vulners.com)
aims at partly mitigating the heterogeneity and complexity of security vulner-
ability information by normalizing and aggregating the available sources above.
However, in the current version, there is no integration among the difference
sources and the query interface is still at the complexity level of the DSL of the
underlying indexing and search engine.

Information Querying with NL support. The use of NL for querying in-
formation sources has been largely enabled thanks to the research carried out
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mainly in the intersection of areas such as Natural Language Processing (NLP)
[5], database systems [2] and Semantic Web technologies [6]. Among the works
that combine NLP with Semantic Web, Tablan et al. [18] propose QuestIO, an
NLI that allows for querying structured information in a domain independent
fashion. The work leverages both NLP techniques and semantic web technolo-
gies to help query structured information stored in ontologies. In the same line,
Lopez et al. [10] propose PowerAcqua, a Q&A system for querying information
stored in heterogeneous, semantic resources. Its main contribution lies in the
ability to combine multiple, large and heterogeneous information sources, which
helps empower their Q&A system. Kaufmann et al. [8] propose Querix, a system
that allows for asking users for clarification whenever ambiguities emerge while
querying ontologies using NL.
On a different front, other works looked into providing NLIs to query more tra-
ditional database systems. In this context, Li and Jagadish [9] propose NaLIR,
an NLI that is able to translate NL queries written in English into SQL state-
ments. Similarly, PRECISE [13] is a system that translates NL queries into SQL
queries using a lexicon, which helps expand the NL query vocabulary. TiQi [14]
proposes an NLI that leverages on previous work (PRECISE [13]) to help query
traceability information in software repositories. In our paper, we do not aim
at advancing the field of NLIs. However, we do leverage on some of the tech-
niques discussed above to provide NL query support over security vulnerability
information. To the best of our knowledge, our work is the first to provide uni-
fied, integrated, enriched and indexed security vulnerability information with
NL query capabilities.

3 Security Vulnerability Information Model

Building an integrated source of security vulnerability requires, first of all, the
identification of useful information sources that will meet the information needs
of users inquiring about security vulnerability. Several such information sources
exist as previously discussed in the related work section. However, what are the
concrete elements users inquire about in the context of security vulnerablities? In
an empirical study on questions asked while diagnosing security vulnerabilities,
Smith et al. [16] identified a total of 78 questions typically asked in this context,
which are categorized into (i) vulnerabilities, attacks and fixes (e.g., “how can
I prevent this attack”), (ii) code and applications (e.g., “where is this method
defined?”), (iii) individual questions (e.g., “have I seen this before”), and (iv)
problem solving support (e.g., “can my team members/resources provide me with
more information?”).

The study above provides a useful guide into typical, vulnerability-related
questions. It is worth noting, however, the wide range of questions asked in rela-
tion to security vulnerabilities, many of which go beyond inquiring strictly about
security vulnerability information. For example, category (ii) focuses mostly on
questions related to the programming code being analyzed, while category (iii)
involves developers’ self-reflection, understanding and expectation questions. In
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our work, we leverage on the results of this study and exclusively focus on ques-
tions related to inquiring about security vulnerability information that is publicly
available on the Web. Table 1 shows an excerpt of questions as emerged from
[16].

Table 1. Sample of questions asked when diagnosing security vulnerabilities (extracted
from [16]). Terms that are relevant for the security vulnerability domain are underlined.

Security vulnerability questions

Q1: “Is this a real vulnerability?”

Q2: “What are the possible attacks that could occur?”
Q3: “How can I prevent this attack?”

Q4: “How can I replicate an attack to exploit this vulnerability?”

Q5: “What is the problem (potential attack)?”
Q6: “What are the alternatives for fixing this?”

Q7: “How do I fix this vulnerability?”

Q8: “How serious is this vulnerability?”

Q9: “Are all these vulnerabilities the same severity?”

The questions listed in Table 1 emphasize on five main information elements
(see the underline words), namely, vulnerabilities / weaknesses, attacks, fixes
and exploits. Leveraging on our experience and results from previous research
[1, 3] on security vulnerability discovery, exploration and understanding, we de-
rive the model shown in Figure 1(a), which aims at capturing the information
elements listed above. In this model, the vulnerability entity represents a re-
ported vulnerability, which is characterized by properties such as an id (i.e.,
the CVE of the vulnerability), publishedDate, description, among other proper-
ties. A vulnerability typically exists in a software that is developed by a vendor.
Moreover, a vulnerability is typically reported by a discoverer (e.g., a white hat
hacker). Vulnerabilities are further characterized by a weakness that is uniquely
identified by an identifier known as CWE (Common Weakness Enumeration)
(https://cwe.mitre.org). Besides the information above, we also consider addi-
tional entities such as exploits, attacks and patches. An exploit is a piece of
software or data that can take advantage of an existing vulnerability. An exploit
can be used to attack a software containing a vulnerability. Finally, a patch is
a fix to a software that can help mitigate the risks of being attacked due to a
vulnerability.

The information model presented in Figure 1(a) integrates different entities
that jointly provide a fuller and richer picture about security vulnerabilities. In
the next section, we discuss in more details how existing, disparate information
silos publicly available on the Web can be integrated, enriched and indexed for
providing a unified access to security vulnerability information.
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Fig. 1. (a) Security Vulnerability Information Model (we show just an excerpt of the
properties for each entity). (b) Architecture for collecting, enriching, indexing and
querying security vulnerability information. The bottom part of the architecture oper-
ates offline, while the upper part does it online.

4 Collecting, Enriching and Indexing Security
Vulnerability Information

The approach proposed in this paper consists of three phases, namely, (i) infor-
mation source collection, adaptation and enrichment, (ii) information indexing,
and (iii) information querying with NL query support. This section presents the
first two (we discuss the latter separately in Section 5). We show the overall
architecture of our proposed solution in Figure 1(b) and use it as a reference to
elaborate on each of the phases above.

4.1 Security Vulnerability Information Collection, Adaptation and
Enrichment

At the bottom of Figure 1(b), we show examples of various, publicly available in-
formation sources that can be used to collect security vulnerability information.
The collection of such information can be done through various mechanisms,
including REST API calls and web data extraction. For example, while the in-
formation provided by Vulners is represented as JSON documents and accessible
through REST APIs, SecurityTracker’s information is available mainly as HTML
web pages, which requires for web data extraction techniques [4]. The tasks of
accessing, collecting, adapting and integrating the information sources to the
target representation (which is presented in the next section) require, therefore,
the creation of dedicated adapters for each of the information sources of interest.
A list of adapters is exemplified in the Adapters component at the bottom of
Figure 1(b).
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In order to have a richer representation of the integrated information resulting
from the previous step, we propose to enrich such information with semantics
from the security vulnerability domain (see the Enrichment component in Figure
1(b)). Such enrichment will allow us to provide more flexibility in expressing NL
queries. Consider, for example, an NL query such as what vulnerabilities are
there in Internet Explorer?. In this query, a user may choose to ask the same
question using different mentions for Internet Explorer, such as IE or simply
Explorer. The enrichment of the original security vulnerability information aims
at enabling the possibility of using alternative mentions for such entities, thus,
allowing for more flexibility in NL expressions.

Security vulnerability information enrichment is performed at two levels.
First, at the attribute level, we store the various mentions that can be used
to refer to an attribute in our information model (see Figure 1(a)). For ex-
ample, for the attribute vulnerability.publishedDate (we use the dot notation,
entity.attribute, to refer to attributes of an entity), we store other mentions such
as {publication date, release date, announcement date, ...}. In this way, whenever
a user uses any of these mentions in an NL query (e.g., release date), we can
associate it to the target attribute (i.e., vulnerability.publicationDate). Second,
at the value level, we store mentions of attribute values for relevant attributes
within this domain. For example, one relevant attribute is weakness.name. A
possible weakness (i.e., attribute value) in the context of security vulnerabilities
is Improper Neutralization of Input During Web Page Generation. This weak-
ness is, however, also commonly referred to as CWE-79, XSS and Cross-Site
Scripting8. With this enrichment we can therefore refer to weakness CWE-79
by using any of its alternative mentions.

The enrichments above are performed by leveraging on named-entity recog-
nition [11], KGs [17] and word embeddings [12] (see the Enrichment component
in Figure 1(b)). Named-entity recognition is used to recognize named-entities
appearing in attributes of the security vulnerability information. In this work,
we focus on three main entity types that are relevant in this domain, namely,
software, weakness and vendor. Examples of such named-entities include Internet
Explorer (software), Microsoft (vendor) and XSS (weakness). The named-entity
recognizers (we use Stanford’s NER [11]) are trained using a combination of pub-
licly available lists of named-entities (e.g., for software, NVD’s Common Platform
Enumeration (CPE) list9), which are extended with alternative mentions using
existing KG. Such mentions are obtained from ConceptNet[17] through its APIs,
by leveraging its synonym relation. In addition, for enrichment at the schema
level, we use word embeddings [12] trained on data from Information Security
Stack Exchange (https://security.stackexchange.com), which allows us to enrich
attribute mentions with semantically-related terms from the security domain.
Next, we show how we represent this information for indexing purposes and how
we extend it with the enrichments discussed in this section.

8 https://cwe.mitre.org/data/definitions/79.html
9 https://nvd.nist.gov/products/cpe
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4.2 Security Vulnerability Information Indexing

The majority of security vulnerability information available on the Web is of
unstructured or semi-structure nature [7]. Much of such information consists of
textual descriptions of vulnerability-related artifacts such as exploits, patches,
breaches and security advisory bulletins. In order to efficiently query this infor-
mation, we therefore propose to rely on existing indexing and searching tech-
nologies that are capable of efficiently dealing with such unstructured and semi-
structured information. More specifically, in this work we rely on ElasticSearch
(https://www.elastic.co) (see the Index / Search Engine component in Fig-
ure 1(b)), an open-source index and search engine based on Apache Lucene
(https://lucene.apache.org).

In ElasticSearch, indexes are flat collections of documents repesented as
JSON. In order to represent our information model shown in Figure 1(a), we
therefore need to translate that model into JSON documents while still keeping
the relationships among the different entities of the model10. We do so by de-
normalizing (flattening) the model in Figure 1(a). The result is shown in Figure
2(a). In this representation, we have one document per each vulnerability. This
document is self-contained (and vulnerability-centric) meaning that all related
entities (as shown in Figure 1(a)) are contained within the same document. As
an example, Figure 2(b) shows a document for vulnerability CVE-2009-1295,
which also includes related entities such as software affected (e.g., Ubuntu) and
weaknesses (e.g., Configuration) involved. This representation will allow us to ef-
fectively retrieve documents from our index to answer queries such as Vulnerabil-
ities in Ubuntu, with weakness CWE-16, which involves relationships (encoded in
our JSON representation) found in our security vulnerability information model
(Figure 1(a)).

In addition to the attributes of our original information model (Figure 1(a)),
we add to each document the enrichments discussed in the previous section (see
the shaded attributes in Figure 2(a) and (b)) . More specifically, we extend the
original information model with additional attributes that contain mentions of
named-entities that are relevant in this domain. As explained before, in this
paper we focus on the entity types software, vendor and weakness. Figure 2(b)
shows examples of alternative mentions for the named-entities Ubuntu OS (the
software), Ubuntu (the vendor) and CWE-16 (weakness).

Finally, besides indexing security vulnerability information, we also keep a
separate index in which we store different mentions of the attributes of our
information model. The mentions are stored using the schema shown in Figure
2(c), where each JSON document stores the name of an attribute (as used in the
main index schema) and its alternative mentions. Figure 2(d) shows an example
JSON document for the attribute publishedDate. In the next section, we show
how the enrichments (i.e., entity and attribute mentions) discussed above are
used by our NLI.

10 https://www.elastic.co/guide/en/elasticsearch/guide/current/relations.html
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{ 
  cveId : String, 
  publishedDate : String, 
  description : String, 
  cvssScore : Float, 
  software : [ 
    {  
      id : String 
      name : String 
      version : String 
      vendor : { 
         id : String 
         name : String 
      } 
    } 
  ], 
  weakness : [ 
    { 
      id : String, 
      name : String, 
      description : String 
    } 
  ] 
  ... more attributes 
  softwareMentions : [ 
    String 
  ], 
  vendorMentions : [ 
    String 
  ], 
  weaknessMentions : [ 
    String 
  ] 
} 

... 
{ 
  attribute_name : String 
  attribute_mentions : [ 
    String 
  ] 
} 
... 

(a)

(c)

... 
{ 
  attribute_name : "publishedDate" 
  attribute_mentions : [ 
    "published date", 
    "publication date", 
    "release date", 
    "announcement date", 
    ... more 
  ] 
}, 
{ 
  attribute_name : "cvssScore", 
  attribute_mentions : [ 
    "cvss", 
    "severity score", 
    "seriousness", 
    ...more 
  ] 
} 
... 

(d)

{ 
  cveId : "CVE-2009-1295", 
  publishedDate : "2009-04-30", 
  description : "Apport before    
     0.108.4 on Ubuntu...", 
  cvssScore : 1.9, 
  software : [ 
    {  
      id : "39398", 
      name : "Ubuntu"  
      vendor : { 
        id : "75847" 
        name : "Ubuntu" 
      } 
    } 
  ], 
  weakness : [ 
     { 
       id : "CWE-16", 
       name : "Configuration", 
       description : "Weaknesses  
            in this category are  
            typically...." 
     } 
   ] 
  ... more attributes 
  sofwareMentions : ["Ubuntu  
      Linux", "Ubuntu OS", ... ], 
  vendorMentions : ["Ubuntu",  
     "Canonical Ltd.", ... ], 
  weaknessMentions : ["CWE- 
     16", "Innapropriate  
     Configuration", ...] 
} 

(b)

Security vulnerability  information indexing Attribute mention indexing

Fig. 2. Index-ready JSON representation of our security vulnerability information
model (introduced in Figure 1(a)): (a) JSON schema of our information model (shaded
attributes correspond to enrichments), (b) Example of a single document containing
vulnerability information, (c) JSON schema for storing attribute mentions, (d) example
of two attributes and their possible mentions

5 Security Vulnerability Information Querying with NL
Support

In order to be able to answer NL queries on top of the index introduced in the
previous section, we first need to understand the intent of users as expressed
in their NL queries. In this section we discuss how this translation takes place
(see the Query Translator component in Figure 1(b)). Since this work uses Elas-
ticSearch for indexing and searching, we show how we do this translation into
ElasticSearch’s own DSL11. Figure 3 summarizes the steps of the translation
process. For illustration purposes, we use in this section the following exemplary
NL query: What vulnerabilities are there in Ubuntu Linux, with a severity score
of 10?

Our translation operates on a subset of ElasticSearch’s DSL to support
attribute-based queries. In order to do this, we focus on two features from this
DSL: Attribute selection and attribute-based filtering. Attribute selection is used
to select attributes that will appear in the result set. Attribute-based filtering is
used to specify query conditions that will help filter the entries to be retrieved
from the index. Here, we support query conditions of the form attribute:value,
where the semantics is that value must be contained in attribute in order for the
condition to be satisfied. Next, we will discuss how NL queries are translated
into this subset of DSL query.

11 https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html
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Fig. 3. Steps for NL to ElasticSearch’s DSL query translation.

NL query pre-processing . The first step toward translating our exemplary
NL query consists in dividing the query into tokens that carry the semantics of
the user’s NL expression. We use Stanford Core NLP Parser [11], which helps
us identify tokens in the query. Once tokenization is performed, we proceed
with removing stop words that do not contribute to the semantics of the NL
expression. In our exemplary query, we remove the tokens What, are, there, in,
with, a and of. This leaves us with the tokens vulnerablities, Ubuntu Linux,
severity score and 10, which we call key tokens (see Figure 4). These key tokens
are used for identifying the intent expressed in the NL query.

Intent identification . Once key tokens are identified, the next task consists in
recognizing the intent of the NL query. We consider two types of intents: (i) at-
tribute selection, and (ii) attribute-value based filtering. In the first case, the user
expresses his information needs by indicating the information item (attribute)
he/she is interested in. For example, in our exemplary NL query, the user is
asking about vulnerabilities in a software, which can be thought of as the list of
CVEs (see the cveId attribute in Figure 2(a) and (b)) of vulnerabilities affecting
such software. We address this intent by matching key tokens to attributes in
our index. In the second case, we consider intents related to filter conditions
that a user may express in an NL query. For instance, in our exemplary query,
the user does not want just any vulnerability, but only the ones affecting the
software Ubuntu Linux. We address this intent by identifying key tokens that
refer to values stored in our index, which can be used as filtering conditions.

We identify the intents above by first focusing on intent type (i). We take
each key token and try to match it to each of the atributes’ mentions stored
in our index (see, e.g., Figure 2(d)). If we find a match between a key token
and an attribute mention (e.g., the key token severity score matches one of the
mentions for the attribute cvssScore), we save the corresponding attribute name
(e.g., cvssScore) for latter use and designate that key token as an attribute-token
[13].

When a key token cannot be matched to any attribute mention, we try to
match it to an attribute value of the index (thus, focusing on intent type (ii)).
For example, the key token Ubuntu Linux does not match any attribute men-
tion. However, it does match one of the mentions of the (enrichment) attribute
softwareMention (see, e.g., Figure 2(b)). Since a mapping could be found to one
of the attribute values, we designate Ubuntu Linux as a value-token, and we
associate it to the corresponding attribute (softwareMention). As a result, the
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... 
  "_source" : [ 
    "cveId" 
  ], 
  query : { 
    "bool" : { 
      "should" : [  
         { 
           "match_phrase" : { 
             "softwareMention" :  
                    "Ubuntu Linux" 
          }, 
          { 
           "match_phrase" : { 
             "cvssScore" : "10" 
          } 
        ] 
... 

attribute-token 

value-token

Elastic Search DSL

attachment
Key tokens

What vulnerabilities are there in Ubuntu Linux, with a severity score of 10?

{ vulnerabilities, Ubuntu Linux, severity score, 10 } 

attachment

Fig. 4. Translating NL queries into ElasticSearch’s DSL query.

overall intent identification task will yield a mapping of attribute-tokens to at-
tributes names (e.g., severity score → cvssScore) and a mapping of value-tokens
to attributes names (e.g., Ubuntu Linux→softwareMentions).

Attribute-token to value-token attachments. In some cases, users may in-
dicate the intent of finding items that satisfy a condition explicitly expressed
in the NL query. In our exemplary query, the user is asking about vulnerabil-
ities in Ubuntu Linux, where such vulnerabilities have a given severity score
(severity score of 10 ). In order to identify such conditions, we need to detect
if any of the attribute-tokens is related to a value-token [13]. To do so, we use
dependency parsing [11] techniques to detect such relations (also referred to as
attachments [13]). In our exemplary NL query, the dependency parsing results
indicate that the attribute-token severity score is attached to the value-token 10.
From this attachment, we infer that the attribute corresponding to the attribute-
token severity score (the attribute is cvssScore in this case) should contain the
value-token 10 (i.e., cvssScore:10 ). We use this attachment next to build query
conditions using the search engine’s DSL query.

DSL query generation. Given the mappings and attachments identified in the
previous steps, we are now ready to generate the DSL query to be executed by
the search engine. Figure 4 shows how we generate ElasticSearch’s DSL query for
our exemplary NL query. We follow three mapping rules for generating such DSL.
In mapping rule MR1 (attribute-tokens are used for attribute selection in Elas-
ticSearch’s DSL), we map the attribute names corresponding to attribute-tokens
(without attachments) to the source attribute of the DSL (see the mapping
of vulnerabilities to cveId in Figure 4). Attribute names listed here are going
to appear in the result set returned by ElasticSearch (this can be thought of as
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the projection operation in relational databases). In mapping rule MR2 (value-
tokens without attachment are used as query conditions), we map value-tokens
to conditions under the query attribute of ElasticSearch’s DSL. For example,
Figure 4 shows that Ubuntu Linux is translated to the condition softwareMen-
tion:“Ubuntu Linux” (because “Ubuntu Linux” was found as one of the values
of attribute softwareMention). In mapping rule MR3 (attachments are used as
query conditions), we map attribute-tokens (with attachments) to the DSL’s
query attribute by creating a condition where the attribute (corresponding to
the attribute-token) should contain the attached value-token. In Figure 4, this
results in the condition cvssScore:10.

6 Evaluation

We conducted experiments with the objective of evaluating the feasibility of our
approach to effectively answer NL queries related to security vulnerabilities. We
present the details of the experimental setting, evaluation mechanism and results
below.

Questions used in the evaluation. We use the questions from Smith et al. [16]
for our evaluation. We adapted the questions listed in Table 1 to questions that
are more contextualized to the information model supported by our solution (see
the examples in Table 2). This adaptation is necessary in order to turn questions
that make references to generic or vague information items into more concrete
questions that can be answered with the information we support. For example,
the reference to “this vulnerability” in question Q8 cannot be answered with
our solution without providing a reference to a vulnerability (e.g., by using a
CVE identifier or similar). We created variants for each of the AQs (e.g., using
references to different vulnerabilities and software), which gave us a total of 65
variants (a mean of approximately 7 variants per AQ). We use these variants for
the purpose of our evaluation.

Dataset. We collected security vulnerability information from Vulners and NVD
(for vulnerabilities, weaknesses, discoverer, software and vendors), ExploitDB
(for exploits), Breach Level Index (for attacks), and SecurityTracker (for patches).
The dataset we use for evaluation consisted of a sample of approximately 102K
vulnerabilities, 25K exploits, 33K patches, 21K software and 12K vendors af-
fected, and 124 weaknesses. These sources were integrated and enriched as dis-
cussed in previous sections.

Implementation. The proposed solution was implemented based on the archi-
tecture shown in Figure 1(b). The adapters for the sources listed above were
implemented using Python 2.7. For enrichment, we leveraged on ConceptNet (as
explained earlier) and word embeddings trained on Information Security Stack
Exchange. We trained the model using Word2Vec [12] and a skip-gram model
with negative sampling (sampling rate of 10 words), 300 dimensions and context
word window of 5. We used ElasticSearch 5.5.2 as our index and search engine.
Tokenization, dependency parsing and named-entity recognition were done using
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Table 2. Examples of adapted questions. The questions in bold font are the origi-
nal questions (Q) from [16], while questions in regular font are examples of adapted
questions (AQ). We used a total of 65 variants of these AQs for the evaluation.

Examples of adapted security vulnerability questions

Q1: “Is this a real vulnerability?”
AQ1: “What are the details of vulnerability CVE-2004-1305?”

Q2: “What are the possible attacks that could occur?”
AQ2: “What are the possible attacks on Firefox?”

Q3: “How can I prevent this attack?”
AQ3: “How can I prevent attacks exploiting shellshock?”

Q4: “How can I replicate an attack to exploit this vulnerability?”
AQ4: “Is there any exploit for vulnerability CVE-2004-1305?”

Q5: “What is the problem (potential attack)?”
AQ5: “What’s the weakness in HeartBleed?”

Q6: “What are the alternatives for fixing this?”
AQ6: “Is there a workaround to protect against Dirty COW?”

Q7: “How do I fix this vulnerability?”
AQ7: “What are the patches to remediate CVE-2017-3561?”

Q8: “How serious is this vulnerability?”
AQ8: “What’s the severity of shellshock?”

Q9: “Are all these vulnerabilities the same severity?”
AQ9: “Whats the severity of vulnerabilities CVE-2017-3561 and CVE-2017-3563?”

Stanford Core NLP 3.8. The NLI and query translator were implemented using
Python 2.7.

Table 3. Evaluation results. We report on
average values for |Rel|, R-Precision and
P@10. P@10 is computed only for ques-
tions with a potentially large |Rel| [15].

Question |Rel| R-Precision P@10
AQ1 1.30 1.00
AQ2 265.40 0.93 1.00
AQ3 1.60 0.85
AQ4 1.00 1.00
AQ5 1.17 1.00
AQ6 1.60 0.85
AQ7 1.10 1.00
AQ8 1.17 1.00
AQ9 2.00 1.00
Avg. 0.96

Expert evaluation. We fed the 65
AQs discussed before to our solution
and obtained the corresponding an-
swers. Such answers were evaluated by
a domain expert in the area of cyberse-
curity who judged whether the answers
provided by our solution satisfy the
NL query in input. Since the results
returned by ElasticSearch are ranked
using a TF/IDF-based scoring system,
we use the metrics R-Precision and
Precision@n (or precision at level n),
which are typically used in Informa-
tion Retrieval [15]. R-precision is com-
puted as TP/|Rel|, where TP is the
number of true positives and |Rel| is the total number of relevant results for a
given query (here, TP is computed only for the top |Rel| answers). For queries
with a potentially large number of results we employ Precision@n. This metric
is used to compute relevant results on the top n answers, which is useful in sce-
narios where end-users are typically interested only on the top results (e.g., web
search) [15]. Precision@n is computed as P@n = TP/n, where TP is the true
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positives and n corresponds to the number of top results to be considered (here,
TP is computed only for the top n results). In this evaluation we consider the
top-10 results and therefore compute Precision@10.

Results and discussion. The results of our evaluation is presented in Table 3.
Most questions have a low |Rel|, except for question Q2. High |Rel| values were
observed whenever an NL query contained value-tokens that can appear among
the values of attributes inside entries that are not relevant to an NL query. In
AQ2 the expert expected to get vulnerabilities related to Firefox browser only.
The system returned, however, also vulnerabilities affecting Mozilla Firefox OS.
Yet, Table 3 reports a Precision@10 of 1.00. Questions AQ1, AQ4-5 and AQ7-9
report high R-Precision values. This stems from the nature of the corresponding
questions, which inquire information about specific vulnerabilities, attacks and
exploits (e.g., CVE-2004-1305 and ShellShock) without much ambiguity (as op-
posed to AQ2). Questions AQ3 and AQ6 ask, essentially, the same question, but
using different terminology. We obtained the same results and thus we report
the same |Rel| and R-precision values. The R-precision have in both cases the
lowest values accross the various AQs.
The proposed solution and evaluation come with their own limitations. Range
queries (e.g., vulnerabilities with severity between 7 and 10 ) and questions that
imply Yes/No answers are not supported in the current version. While our solu-
tion cannot provide answers for the former, in the latter case the answer provided
is either an empty result set (for “No” answers) or a list of results (for “Yes”
answers). In addition, questions involving aggregate functions such maximum /
minimum values (e.g., what’s the latest vulnerability in Ubuntu? ) and sums /
counts (e.g., how many vulnerabilities are there in FreeBSD? ) are not currently
supported. The same applies for comparison operators such as > and <. In ad-
dition, our evaluation focuses only on the set of questions obtained from [16] and
involves only one expert evaluator. More thorough evaluations are needed with a
larger and more varied set of questions, involving also pilot users and additional
evaluators. We plan to expand our evaluation in this direction.

7 Conclusion and Future Work

This paper proposes an approach and architecture for supporting the explo-
ration and understanding of security vulnerabilities. Our approach stems from
the pressing needs for a unified, integrated and easy-to-query security vulnera-
bility information platform that helps businesses mitigate the threats from the
growing number of security vulnerabilities. The NL query capability of the pro-
posed solution makes it a good candidate for integration into productivity tools
used in software development and devops environments (e.g., through chatbots),
which can help bring security vulnerability information seamlessly into context
and while performing core development and devops tasks.

Directions for future work include the development of domain-specific on-
tologies and knowledge graphs for supporting more complex queries beyond
attribute-based queries (e.g., relationship-based queries), further enrichments
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using intelligent information taggers that leverage on advancements in NLP and
AI, and the use of alternative sources (e.g., Twitter) for obtaining updates on
the latest cybersecurity developments (e.g., 0-day vulnerabilities and attacks).
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