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Abstract—Application Programming Interface (API) is a core

technology that facilitates developers’ productivity by enabling

the reuse of software components. Understanding APIs and

gaining knowledge about their usage are therefore fundamental

needs for developers that impact a wide range of software

development activities. This paper presents an approach to enable

API users to explore, discover and learn about APIs through

API topic issues discussed in Stack Overflow (SO), a widely used

programming, community question-answering (CQA) site. Our

work proposes an integrated API Knowledge Base (KB) and

indexing technique that combines both SO API-related posts as

well as other API learning resources collected from the Web

(e.g., API video-tutorials from Youtube). The resulting indexed

and enriched API community knowledge can be queried in

a API-topic-issue driven manner using a simple yet powerful

domain-specific language (DSL). We demonstrate the feasibility

of our approach through Scout-bot, our tool for exploration and

discovery of API topic issues.

Index Terms—API community knowledge, API topic issues,

API Indexing, API query bot

I. INTRODUCTION

Developers rely on several APIs for their day-to-day soft-
ware development tasks [1]. They also resort to several re-
sources in order to learn about the usage of APIs. Examples
of such resources include CQAs such as SO1, API descriptions
[2], code examples [3], among other resources. Yet, the
problems of searching and finding API-related knowledge that
satisfies the needs of developers are still open and they are
far from being completely solved. In this context, there are
several studies in the literature on the analysis [4], extraction
[5] and recommendation [3] of API-related knowledge such
as documentation and usage examples.

One such line of studies includes the improvement of
API learning resources. Works along this dimension focus
on the problems of lack of API usage examples [6], missing
descriptions in API documentation [7] and insufficiency of
usage patterns [8]. Other studies include the factors affecting

1https://stackoverflow.com

the usability of APIs [9] and code snippets in software-
related documentation (including APIs) [2]. Further topics
of interest in the literature include the production [10]–[14],
problems/issues [15]–[18] and enrichment [7], [8], [19]–[21]
of API learning resources.

Despite all the studies and proposed approaches in this
context (we elaborate more on this in Section 2), it is still
challenging to explore and navigate API knowledge and their
related issues [22]. This is partly due to the heterogeneous
and fragmented information found across different sources,
making it difficult for querying, exploration and discovery
purposes. In this paper, we address this problem by organizing
API community knowledge into API topics issues to enable
discovery and exploration. We focus on the latter, as opposed
to traditional keyword-based search, because the it is more
appropriate for exploration and learning purposes, particularly,
in unfamiliar spaces [23]. In concrete, in this paper, we
propose:

• An API-topic-centric data model for building the foun-
dation for a KB to represent and store relevant API
knowledge and API topic issues.

• An API knowledge indexing technique to support API
topic issues exploration that enables the various API
resources to be accessed conveniently in an API-topic-
driven manner.

• An enrichment technique for API topics terminology that
leverages word embeddings [24]. The proposed approach
helps provide developers with more flexibility for ex-
pressing their API topic issues queries.

• A query bot that helps querying API topic issues through
a simple yet powerful domain-specific query language.
We showcase how such query bot can be implemented
and seamlessly integrated into existing productivity tools.

We organize this paper as follows: Section 2 introduces
background and related work. Section 3 presents our API topic
issues model and our approach to indexing and enrichment of
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API topic issues. Section 4 presents our DSL for querying
API topic issues. In this same section, we also propose Scout-

bot, a bot for querying the API topic issues enriched index,
including its implementation details and evaluation. We close
this paper with Section 5 presenting the final discussions and
future directions for this work.

II. BACKGROUND AND RELATED WORK

APIs are vital in software evolution [11], data exchange and
provision of functionalities between software components [25]
and services [26]. API learning resources (e.g., API reference
documentation) are typically the starting point to learn about
APIs. However, oftentimes they are insufficient when it comes
to learning about how APIs work [15], forcing developers to
resort to various alternative resources [27] (e.g., CQA sites
like SO). In this section, we provide background and related
work for management of API learning resources and the issues
faced in this context.

One of the main topics of interest in the literature is that
of API learning resources problems. Works in this context
explore issues found in such resources including problems in
content and presentation, changes in APIs and their evolution,
undocumented exceptions and their implications, among other
issues. For instance, Uddin and Robillard [15] reported on
problems/failures in API learning resources and categorized
them into two main sub themes: Content and presentation.
Problems with content include unclear description of an API
element, descriptions of API elements in unexpected areas,
examples without explanations, descriptions with references
to old API versions, inconsistency and incorrectness. Problems
with presentation include excessive details, bloat descriptions,
and structural information issues (e.g., fragmented details).
Sohan et al. [16] studied changes in API documentation,
communication and versioning to understand how Web APIs
evolve. While Kechagia et al. [17] investigated the undocu-
mented exceptions in traces of Android applications crashes
and found that 19% of them are the result of undocumented
exceptions. Overall, these works show that issues in API
learning resources are pervasive, pushing programmers to
alternative resources such programming CQAs [18].

The production of API learning resources has also been
the target of a number of studies. Works under this category
explore the production of learning resources to support the
usage of APIs. Studies here focus on the management of
contributions (e.g., [10]), navigation and search for locating
proper information to support API documentation production
tasks (e.g., [28]), and tools for actually producing API doc-
umentation (e.g., [12]). Under management of contributions,
Thominet and Luke [10] studied how author support guides
are constructed and improved to produce API documentation
in Wikis. Watson [13] studied practices for writing API
documentation to enable researchers and technical writers to
produce effective documentation. While Pawlik et al. [14]
explained how the crowd was managed toward producing the

documentation of Numpy2 Python library.
Navigation and search are considered key tasks in finding

relevant information such as code examples and summaries
that can be used to support the production of API documen-
tation. Here, Gvero et al. [29] proposed a free syntax form
queries to automatically generate code fragments, while in
[30] researchers focused on finding relevant reusable classes
and methods using search engines. Similarly, Kim et al. [28]
proposed a data mining approach to simplify the task of finding
code examples and recommending them with summaries of
API usage.

Works in the context of actual API documentation produc-
tion includes Scribble [31], which was proposed to gener-
ate documentation for a programming language called PLT
scheme’s3, [32] proposing an authoring tool for creating help
pages, and, ScribeCrowd [33], which manages the process of
composing technical documents and engages experts in writing
tasks.

Finally, the literature also features extensive work in the
context of API learning resources improvement. Works along
this dimension aim to address problems such as the lack of
usage examples in API documentation (e.g., [6]), insufficiency
of usage patterns (e.g., [8]), and the lack of descriptions
in API documentation (e.g., [7]). In particular, we observe
that researchers put emphasis on the importance of usage
examples to improve API documentation. Here, API users and
developers are not only after a short code snippet, but they
also need additional resources that help with API descriptions
and explanations. For instance, McMillan et al. [19] developed
a system called Exemplar, which finds software projects of
high relevance so that they can be considered as examples.
Usage patterns are equally important as examples. Studies in
this area investigated techniques to find usage patterns through
various data mining approaches. For instance, Nguyen et al.
[8] proposed a JavaScript (JS) web application for mining
inter-procedural usage patterns. Additionally, in the context
of lack of API descriptions, Dasgupta et al. [20] proposed an
automated approach called ENTRANCER, which takes source
code, requirement documents and other artifacts to extend the
client’s API calls with related information. While Inozemtseva
et al. [21] proposed a tool called NEWTON, which automati-
cally links references (e.g., Github repositories, JavaDoc, code
reviews) to source code. NEWTON use references from the
Web to enable code searchability.

The wealth of studies found in the literature regarding the
management and issues related to API learning resources is
a patent indication of the pervasive problems and challenges
faced in making APIs accessible and understandable to end
users of these APIs. The work presented in this paper aims
to contribute to the literature through an API-topic-centric
approach that allows API users to explore and discover API
community knowledge. We do this through an enriched API
KB, handy domain-specific query language and query bot that

2https://numpy.org/
3https://plt-scheme.org/



helps facilitate such tasks. We elaborate more on this in the
following sections.

III. API TOPIC ISSUES MODELING AND INDEXING

Several resources can be found nowadays on the Web that
can help with API learning. Among these resources, SO is
one of the most widely used and indispensable resources for
facilitating the usage and understanding of APIs [34]. It fea-
tures a vast repository of programming knowledge including
16 million questions, 25 million answers, 68 million comments
and 53 thousand tags as of August 2018. Study [35] has
shown that API-related posts in SO can be categorized into
topic issues such as API security, API usage, API Debugging,
among other topics issues. In this section, we propose a data
model to represent, enrich and index API-related posts in SO
based on such topic issues, in order to support exploration
and discovery of API-related knowledge. We discuss next the
data model as well as the extraction/curation and indexing
techniques we use to represent and index such resources.

A. Data Model

Given the relevance of SO in the programming community,
we developed a SO- and API-topic-centric data model to
capture knowledge about APIs. Leveraging on our experience
and results from previous research [35], we introduce the
model in Figure 1. Here, API is a software released in a
current version represented by API version. An API version
is typically accompanied by an API documentation, where the
API documentation can be a reference documentation, getting-
started guide or an open API specification (e.g., a Swagger
API Documentation4). An API version contains several API
methods represented by the Method entity of our model.
Insights, in turn, are obtained from our information sources
and include metrics about posts and developers using the API.

Next, an API Topic represents a topic issue, as identified in
[35]. SO Code Example represents code examples that contain
a method from a specific API version. These code examples
can be either obtained automatically or from a human-curated
list of examples. An API, may contain several other learning
resources such as getting-started videos from Youtube5, code
examples from Github6, among other types of resources.
Finally, and, most importantly, our data model includes Stack

Overflow posts. This entity represents a question, answer or a
Wiki7 posted on SO.

Notice that, in addition to including entities and attributes
from SO’s dataset in our model (see Figure 1), a key char-
acteristic lies in the API-topic-centric approach we followed
in the model. Such modelling decision is key to building a
solution that enables the indexing, exploration and discovery
of API-related knowledge based on API topic issues as we
will be discussing in the next sections.

4https://swagger.io
5https://youtube.com
6https://github.com
7https://meta.stackexchange.com/questions/11740/what-are-community-

wiki-posts

B. API Community Knowledge Extraction and Curation

We leverage on the API community knowledge in SO and
the data model introduced in the previous section in order
to build our API KB. The first step toward extracting such
API-related knowledge consists in identifying SO resources
(e.g., posts) that relate to known APIs. Curated lists of known
APIs can be obtained from existing directories of APIs such as
ProgrammableWeb8. By leveraging SO’s search APIs9 we can
construct keyword-based queries that can help us retrieve posts
that relate to specific APIs. For instance, in order to search
for posts related to Windows API10 (or WinAPI for short), we
can build a query containing the keyword “WinAPI” as tag, as
shown in Figure 2. More complex queries can be built using
SO’s APIs, e.g., to include posts that contain specific keywords
in the body of posts (see footnote 9 for more details).

In SO, not all posts are properly tagged and curators from
the community may add tags over time as needed. This can
lead to missing the extraction of relevant content simply
because posts were not tagged properly with the corresponding
API name. We therefore resort to queries that retrieve posts
based on APIs mentioned not only within tags but also title
and body of posts. As explained before, such list of mentions
can be obtained from existing list of APIs available on the
Web (see footnote 8). Additionally, in order to assign topics
to each post extracted from SO, we use a list API-topic-issues
seed keywords, e.g., based on the topics listed in [35]. Such
list of seed keywords are expanded with alternative mentions
obtained from a pre-trained word embedding based on SO
[36]. This way, whenever we identify mentions from our list
of API-topic-issues in a post, we associate the post to the
corresponding topic issue.

In addition to SO posts, we further curate our API KB
by enriching it with additional resources such insights, code
examples, API documentation, among other resources (see
our model in Figure 1). Such enrichments can be sourced
from other sites such as Github (e.g., for code examples) and
Youtube (e.g., for video-tutorials). Github and Youtube also
provide search APIs11 12 that can help retrieve API-related
resources, which we leverage in our work.

C. Indexing

When an API consumer, programmer or practitioner is
interested, e.g., in learning about “security” issues related to
“Facebook Graph API”, they typically need to make several as-
sumptions and keyword-based guesses in order to find relevant
information. This, in turn, may not bring all posts that tackle
the target API issues, limiting search results only to exact
keyword-based matches. While this type of searches is popular
in many platforms (e.g., SO) to look for information that help
them solve issues related to specific programming tasks, it is

8https://www.programmableweb.com
9https://api.stackexchange.com/docs/search
10https://docs.microsoft.com/en-us/windows/win32/apiindex/windows-api-

list
11https://developer.github.com/v3/search
12https://developers.google.com/youtube/v3/docs/search



Fig. 1. Data model used for the representation of learning resources.

1

2 {"mappings":
3 {"_stackoverflow":
4 {"properties":
5 {
6 "title":{"type":"text"},
7 "body": {"type":"text"},
8 "tags": {"type":"keyword"},
9 "api": {"type":"keyword"},

10 "topic": {"type":"keyword"},
11 "question_id":{"type": "integer"}
12 }
13 }
14 }
15 }

Listing 2: Elasticsearch mapping for indexing SO posts along with the api
and topic mentions they relate to.

1 GET /2.2/search?pagesize=100&order=desc&sort=activity&tagged=
winapi&site=stackoverflow

Listing 1: Example of SO’s search API to query for posts related to WinAPI.

1

Fig. 2. Example of SO’s search API to query for posts related to WinAPI.

not suitable for a topic-driven search of posts related to APIs.
In this section, we report on how we leverage Elasticsearch13

and the data model introduced before for indexing APIs on a
topic-centric basis.

Elasticsearch is an open-source search engine that provides
near real-time search services. It is built upon an open-source
information retrieval and indexing library: Apache Lucene14.
Elasticsearch provides REST APIs and supports the distributed
aspects that Apache Lucene lacks. In Elasticsearch’s termi-
nology, an index is a container that stores JSON documents
(e.g., posts in SO). The schema of an index is defined through

13https://www.elastic.co
14http://lucene.apache.org

so-called mappings15. Elasticsearch uses Apache Lucene to
generate an inverted list [37] of keywords where each keyword
is associated to documents that contain such keyword.

We leverage on Elasticsearch indexing and searching ca-
pabilities to support exploration and discovery of API topic
issues. In concrete, we index SO posts related to APIs and
use the resulting index as a gateway to get access to our KB
represented by the model in Figure 1. The index follows the
mapping (i.e., schema) shown in Figure 3. In this mapping,
the title, body, tags and question id correspond to standard
attributes from SO’s dataset. Whereas the attributes api and
topic are extended attributes that characterize each post based
on the API (e.g., “WinAPI”) and topic (e.g., “API Security”)
the post relates to.

APIs may be referred to using different mentions across
different posts. For instance, “Windows API” can be referred
to also as “WinAPI” and “Windows 32 API”. The same
rationale applies to API topic issues. In order to be able to
account for different mentions of APIs and API topic issues,

15https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping.html



1

2 {"mappings":
3 {"_stackoverflow":
4 {"properties":
5 {
6 "title":{"type":"text"},
7 "body": {"type":"text"},
8 "tags": {"type":"keyword"},
9 "api": {"type":"keyword"},

10 "topic": {"type":"keyword"},
11 "question_id":{"type": "integer"}
12 }
13 }
14 }
15 }

Listing 2: Elasticsearch mapping for indexing SO posts along with the api
and topic mentions they relate to.

1 GET /2.2/search?pagesize=100&order=desc&sort=activity&tagged=
winapi&site=stackoverflow

Listing 1: Example of SO’s search API to query for posts related to WinAPI.

1

Fig. 3. Elasticsearch mapping for indexing SO posts along with the api and
topic mentions they relate to.

we propose to extend the values within the attributes api and
topic (see Figure 3) to include different mentions thereof. We
do such enrichment using word embeddings techniques [24],
where words (from a given corpus) are mapped to a vector
space. A key property here is that words that are semantically
similar appear close to each other in the vector space. Several
pre-trained models exist today [24], [36], [38], including
general-purpose embeddings (e.g., based on Wikipedia corpus)
and domain-specific ones (e.g., programming corpora). We
focus on the latter and leverage on a word embedding pre-
trained model based on SO [36]. Furthermore, we leverage
on previous work on building software engineering thesaurus
[39] and API recognition in SO [40] in order to identify
API-relevant terms from SO posts. Table I shows examples
of SO posts enriched with additional mentions for APIs and
API topic issues after the application of the aforementioned
techniques.

The resulting index can thus be used to perform searches
based on APIs and their associated topic issues. The
corresponding queries can be written with terminology
flexibility thanks to the enrichments discussed before (e.g.,
users can write queries related to Windows API by using the
terms “WinAPI”, “Windows API”, etc). In the next section,
we elaborate more on how to leverage this index to build a
query bot that allows for querying API knowledge based on
API topic issues and using our own domain-specific query
language.

IV. SCOUT-BOT: API TOPICS DISCOVERY AND
EXPLORATION BOT

In this section we introduce Scout-bot, a query bot system
that enables users to explore and discover APIs through API
topic issues. With Scout-bot (see Figure 4), a user writes a
query based on a DSL (we will present our API-Topics DSL
next) and the bot returns the corresponding results containing
related API resources.

In order to do so, Scout-bot first parses the user expression
to identify query elements such as API names, API Topics or

Scout-bot API user

API-topics-issue query parser

Named-entity
recognition

(NER) KB

 API entities = 
 [Facebook Graph API] 
 Topics Named-entities = 
 [API Constraint]

Elasticsearch DSL
query generation

Elasticsearch 
search service

Query
results

Parsed query

Facebook Graph API . API Constraint

Query UI

Facebook Graph API . API Constraint

Query UI

Show more...

Fig. 4. Overall architecture of Scout-bot.

both, and the boolean operators that may be present in the
expression. Then, results from the parser are passed on to a
query generator to translate queries written in our API-Topics
DSL into Elasticsearch’s own DSL. Finally, the translated
query is sent to Elasticsearch’s search services and the results
are presented back to the user. The overall query bot system
is depicted in Figure 4. Next, we describe the API-topics DSL
we use for writing queries in Scout-bot.

A. API-Topics DSL: A Domain-specific Query Language for

APIs

We provide a simple yet powerful API-topics DSL that
allows users to write queries based on the key entities involved
in our approach: API names and API topics. We show next
the queries allowed by our API-Topics DSL:

API-Name.Topic-Name This query allows users to explore
a topic in the context of a given API. It suffices to provide
an API and topic name separated by a “dot” (.) operator. For
example, “WinAPI”.“API Security” allows users to explore
the topic of API Security in the context of Windows API.

API-Name.Topic-Name contains ‘keywords’ In this case, the
query allows users to explore APIs and topics based on a
set of keywords. For example, a user that wants to explore
authentication mechanisms in the context of API Security



TABLE I
EXAMPLES OF ELASTICSEARCH’S INDEX ENTRIES INCLUDING SO QUESTIONS (IDENTIFIED BY QID) ALONG WITH THE api AND topic MENTIONS THEY

RELATE TO.

SO QID title body tags api topic

9484998 Simple
FTP Client
authentication?

I have written a simple
FTP Client-Server code
using WinSocs ...

c++, windows, winapi, au-
thentication, ftp

winapi {win-api, win32-
api, windows-api}

authentication {oauth, au-
thorization, auth}

25885369 Windows
API function
CredUIPrompt-
ForWindows-
Credentials also
returns an error
of 31

When I use the function
CredUIPromptForWin-
dowsCredentials to
display a windows ...

c++, winapi winapi {win-api, win32-
api, windows-api}

security {safety, policies},
authentication {oauth, au-
thorization, auth}

7725464 Windows
security center
API

I would like to access the
Windows Security Cen-
ter...

c++, windows, security,
winapi

winapi {win-api, win32-
api, windows-api}

security {safety, policies}

topic for Windows API can write a query like “WinAPI”.“API

Security” contains ‘Authentication’.

API-Name.Topic-Name AND API-Name.Topic-Name This
expression allows users to explore APIs using a conjunctive
query. For example, if a user wants to inquire about over-
lapping issues of security and debugging under WinAPI, the
following query can be used: “WinAPI”.“API Security” AND

“WinAPI”.“Debugging” (notice that a post can be categorized
under more than one topic issue).

API-Name.Topic-Name OR API-Name.Topic-Name A user
can also write disjunctive queries to explore APIs and topic
issues. For instance, a user exploring security issues in the
context of Github API or GitLab API can write the query
“Github-API”.“API Security” OR “GitLab-API”.“API Secu-

rity”.

Thus, the possibility to express simple queries in terms
of API names and topics (with the option to refine queries
using the contains operator) as well as the possibility of
combining them using disjunctive and conjunctive Boolean
operators results in a simple query language that enables
the construction of arbitrarily complex queries to support
exploration and discovery of API knowledge.

B. Implementing and Evaluating Scout-bot

We implemented Scout-bot as a Slack16 app. Slack is a
cloud-based collaboration platform that enables users and
developers to interact and communicate with each other as
well as with third-party apps. We implemented both the DSL-
query parser and the API Topics DSL described previously as
microservices using Python Flask17. This serves as the web-
hook that connects our query bot app to our query parser and
API-Topics DSL. The query bot interface app and the micro-
services are deployed on an Ubuntu virtual machine hosted on

16https://slack.com
17https://flask.pocoo.org

Fig. 5. Implementation of Scout-bot in Slack.

Google Cloud Compute18 service. Figure 5 shows a screenshot
of Scout-bot in action where, for illustration purposes, we
show only SO’s main attributes (in practice, Scout-bot can
show other elements from our KB model presented in Figure
1 including insights, learning resources, API documentation,
among other resources).

In order to evaluate Scout-bot, we measured its ability to
retrieve relevant posts when given a query using our API-
Topic DSL. To do so, we extracted, enriched and indexed a
sample of approximately 62K API-related posts collected from
SO. The rationale of our evaluation consists in sampling posts
from these initial 62K posts, building queries that capture the
essence of the API and topic being discussed in the post, and

18https://cloud.google.com/compute



manually inspecting the returned results. The recommended
minimum number of posts to be sampled was 96, considering
a margin of error of 10% and a 95% confidence interval
[41]. The actual number of posts sampled were 109, which
allowed us to cover a number of API topic issues for at least
three different APIs (Windows, Facebook and Youtube APIs).
In order to build queries based on our API-Topic DSL we
considered the posts’ title and question body. Table II shows
examples of queries built based on the sampled posts.

TABLE II
API-TOPIC DSL QUERIES BASED ON ACTUAL QUESTIONS (QID) FROM

SO.

SO QID Formulated API-topic DSL query

13115608 facebook.usage contains ‘authentication services’

2478391 youtube.usage contains ‘get video title jquery’

21329250 facebook.debugging contains ‘FB og image pulling’

3566018 winapi.debugging contains ‘compile fatal error’

23417356 facebook.usage contains ‘permanent login page access
token info’

6218325 winapi.usage contains ‘check if directory windows exists’

1037595 winapi.usage contains ‘user interaction time’

167414 winapi.usage contains ‘POSIX system file rename’

940707 winapi.usage contains ‘get Win32 native APIs version’

We evaluate the performance of Scout-bot in terms of
precision [37]. We focus on how the system performs at
returning relevant documents to the query in the exploration
search. In this case, we follow the common information
retrieval evaluation metrics Precision@K (or P@K) and R-
Precision [37]. P@K helps measure the returned results at the
top K number of documents. When considering the possibility
of exploring more results (beyond the top K ones), it is also
useful to report on the R-precision metric, which is calculated
as R-Precision = r/|rel| . This metric measures the number
of relevant documents returned by the system (r) out of the
total number relevant documents (|rel|).

After computing the values of P@1, P@3, P@10 and R-
Precision for each of the 109 formulated queries (see examples
in Table II), we proceeded with computing the mean values
for these metrics across all 109 queries. The results show a
performance of P@1 = 0.99, P@3 = 0.96, P@10 = 0.52
and R� Precision = 0.98. The value 0.99 for P@1 is
important because users interacting with Scout-bot can have
the most relevant result right in the first returned result in
almost all cases. Both P@3 and R� Precision also report
relatively high values. In terms of P@10, however, Scout-
bot’s performance is rather low. This shortcoming is inherent
to the metric P@K when the number of relevant results is
(much) lower than K [37]. For example, when the number of

relevant results is 1, then the maximum value for P@10 is 0.1
(this is why R-Precision is also computed to provide a more
comprehensive view on performance).

V. DISCUSSION AND FUTURE WORK

This paper presented an approach to index, explore and
discovery API community knowledge in a topic-driven man-
ner. Our approach stems from the needs of the programming
community to learn and understand APIs in an increasingly in-
terconnected technology landscape, where APIs are considered
first-class citizens. We combine our integrated KB, enriched
index and simple yet powerful domain-specific query language
into a useful tool, Scout-bot, that showcases how our solution
can be seamlessly integrated into popular productivity tools
such as Slack. Besides the technical advantage of integrating
Scout-bot into such productivity tool, our aim was also to
showcase that API community knowledge can be brought close
to the toolset programmers rely on in their daily tasks, doing it
in a manner that facilitates access to such knowledge without
the need of switching context (e.g., opening a browser to look
for online API documentations or SO Q&As). This helps bring
the power of and community knowledge about APIs right into
the working environment of API consumers, programmers and
practitioners.

This work has its own limitations. Firstly, the API com-
munity knowledge used to build our KB is based (and mainly
driven by) SO. Yet, the rationale we followed is that of relying
on a reputable CQA site (SO) that converges common issues
developers face when programming, in general, and, using
API, in particular. Thus, by leveraging on SO, we are also
leveraging both the wisdom of the crowd and the resulting
curated API knowledge. Secondly, the evaluation presented
in this paper is focused only on the performance of our
approach in terms of (information retrieval) precision. Further
and deeper studies are needed where end-users are involved to
better understand the implications of our solution in learning
and using APIs.

Future directions include leveraging embedding techniques
for representing elements of our KB in a vector space (e.g.,
topics, APIs, Q&As) and the development of novel indexing
and querying techniques on top of such embeddings to support
semantically richer exploration and discovery. We also plan to
validate our approach through studies that involve API users
in realistic, production environments.
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the first author’s Ph.D. thesis [42] as part of the supervision
of his co-authors.
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