
67

Mining and Quality Assessment of Mashup Model Patterns with the
Crowd: A Feasibility Study

CARLOS RODRÍGUEZ, University of Trento
FLORIAN DANIEL, Politecnico di Milano
FABIO CASATI, University of Trento

Pattern mining, that is, the automated discovery of patterns from data, is a mathematically complex and
computationally demanding problem that is generally not manageable by humans. In this article, we focus
on small datasets and study whether it is possible to mine patterns with the help of the crowd by means of
a set of controlled experiments on a common crowdsourcing platform. We specifically concentrate on mining
model patterns from a dataset of real mashup models taken from Yahoo! Pipes and cover the entire pattern
mining process, including pattern identification and quality assessment. The results of our experiments
show that a sensible design of crowdsourcing tasks indeed may enable the crowd to identify patterns from
small datasets (40 models). The results however also show that the design of tasks for the assessment of
the quality of patterns to decide which patterns to retain for further processing and use is much harder (our
experiments fail to elicit assessments from the crowd that are similar to those by an expert). The problem
is relevant in general to model-driven development (e.g., UML, business processes, scientific workflows),
in that reusable model patterns encode valuable modeling and domain knowledge, such as best practices,
organizational conventions, or technical choices, modelers can benefit from when designing own models.

Categories and Subject Descriptors: D.2.13 [Software Engineering]: Reusable Software; H.1.2 [Informa-
tion Systems]: User/Machine Systems; H.2.8 [Database Management]: Database Applications

General Terms: Algorithms, Experimentation, Human Factors

Additional Key Words and Phrases: Model patterns, Pattern mining, Crowdsourcing, Mashups

ACM Reference Format:
C. Rodrı́guez, F. Daniel and F. Casati, 2014. Mining and Quality Assessment of Mashup Model Patterns with
the Crowd: A Feasibility Study. ACM Trans. Internet Technol. X, Y, Article 67 (March 2016), 26 pages.
DOI: http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Mashups are composite web applications that are developed by integrating data, ap-
plication logic, and pieces of user interfaces [Daniel and Matera 2014]. Mashup tools
are integrated development environments (IDEs) that aim to ease the implementation
of mashups. Typically, these tools adopt a model-driven development paradigm, where
developers express application logic via graphical models that can be interpreted at
runtime or transformed into executable code. Yet, developing good mashups is still a
non-trivial task. It requires not only fluency in the modeling language, but also inti-
mate knowledge of the target domain, e.g., the practices, conventions and procedures
that characterize the domain, and of the respective technologies. These requirements
do not apply to mashups only. We find them over and over again in all those contexts
that leverage on model-driven formalisms, such as service composition [Alonso et al.

Author’s addresses: C. Rodrı́guez and F. Casati, Department of Information Engineering and Computer
Science, University of Trento, Via Sommarive 9, 38123 Povo (TN), Italy. F. Daniel, Politecnico di Milano -
DEIB, Via Ponzio 34/5, 20133 Milano, Italy.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© 2016 ACM. 1533-5399/2016/03-ART67 $15.00
DOI: http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Internet Technology, Vol. X, No. Y, Article 67, Publication date: March 2016.

67:2 C. Rodrı́guez, F. Daniel, and F. Casati

2003], business processes [Weske 2007], scientific workflows [Deelman et al. 2009],
UML [OMG 2014], or Web engineering with IFML [Brambilla et al. 2014].

One approach to mitigate this complexity is assisting developers in their task by pro-
viding them with automated modeling recommendations. In the context of mashups,
this approach has produced a variety of techniques: Carlson et al. [2008], for instance,
recommend possible next components to be used in response to the modeler using a
given component; the approach is based on semantic annotations of component de-
scriptors. Greenshpan et al. [2009] propose an approach that recommends components
and connectors (so-called glue patterns) in response to the modeler providing a set
of desired components; the approach computes top-k recommendations out of a graph-
structured knowledge base containing components and glue patterns (nodes) and their
relationships (arcs). Chen et al. [2009] allow the modeler to mash up components by
navigating a graph of components and connectors; the graph is generated in response
to a query providing descriptive keywords. Riabov et al. [2008] also follow a keyword-
based approach to express goals to feed a planner that derives candidate mashups.
Elmeleegy et al. [2008] recommend components based on co-occurrence probabilities
and semantic matching; upon the selection of a component, an automatic planner de-
rives how to connect the selected component with the partial mashup.

In our own prior work, we contributed to the state of the art with an extension of Ya-
hoo! Pipes (http://pipes.yahoo.com) that interactively recommends and weaves complex
mashup model patterns while modeling a “pipe” (a data mashup). Recommended pat-
terns were mined from a repository of freely accessible pipes models [Rodrı́guez et al.
2014b]; the specific dataset used consisted of 997 pipes taken from the “most popular
pipes” category, assuming that popular pipes are more likely to be functioning and use-
ful. Before their use, patterns were checked by an expert to assure their meaningful-
ness and reusability. The extension is called Baya, and our user studies demonstrate
that recommending model patterns has the potential to significantly lower develop-
ment times in model-driven mashup environments [Roy Chowdhury et al. 2014].

The approach however suffers from problems that are common to pattern mining al-
gorithms in general: identifying good support threshold values, managing large num-
bers of produced patterns, coping with noise (useless patterns), giving meaning to pat-
terns, and dealing with the cold start problem (mining patterns from empty or very
small datasets that still need to grow) is hard. Inspired by the recent research on
crowdsourcing [Howe 2008], the intuition emerged that it might be possible to attack
these problems with the help of the crowd, i.e., by involving humans in the mining pro-
cess. The intuition is backed by the observation that pure statistical support does not
always imply interestingness [Geng and Hamilton 2006], and that humans are anyway
the ultimate responsibles for deciding about the suitability of discovered patterns.

In [Rodrı́guez et al. 2014a], we studied one approach to mine mashup model patterns
for Yahoo! Pipes with the help of the crowd (the Naı̈ve approach presented in this
paper), compared it with our automated mining algorithm described in [Rodrı́guez
et al. 2014b], and discussed its applicability to business process models. The study in
this article builds on these prior works and advances them along three directions:

— The design and implementation of two new crowd-based pattern mining approaches
that aim to understand if the crowd is able to spot repeated patterns in a dataset
(support) and their comparison with the Naı̈ve and automated approaches;

— The design, implementation and comparison of two crowd-based pattern quality
assessment approaches and one expert-based quality assessment approach;

— An analysis of the work performance of the crowd and of its ability to self-curate a
pattern knowledge base as required by recommendation tools.

ACM Transactions on Internet Technology, Vol. X, No. Y, Article 67, Publication date: March 2016.

Mining and Quality Assessment of Mashup Model Patterns with the Crowd 67:3

Next, we introduce the background of this study and state our research questions.
Then, we describe the overall design of the study and the adopted methodology. In
Sections 4 and 5 we describe the mining and quality assessment approaches and refine
the research questions into more concrete sub-questions, study them, and discuss our
findings. In Section 6, we discuss the limitations and threats to the validity of the work
and then close the article with related works and our final considerations.

2. BACKGROUND AND RESEARCH QUESTIONS
2.1. Reference Mashup Models: Data Mashups
Data mashups are a special type of mashups that specifically focus on the integration
and processing of data sources available on the Web. Typical data sources are RSS and
Atom feeds, plain XML and JSON resources, or more complex SOAP and RESTful web
services. Data mashup tools are IDEs for data mashup development. They provide a set
of data processing operators, e.g., filters or split and join operators, and the possibility
to configure data sources and operators (we collectively call them components).

In this paper, we specifically focus on the data mashup tool Yahoo! Pipes and our pat-
tern recommender Baya [Roy Chowdhury et al. 2014]. The components and mashups
supported by these tools can be modeled as follows: Let CL be a library of components
of the form c = 〈name, IP, IF,OP, emb〉, where name identifies the component (e.g.,
RSS feed or Filter), IP is the set of input ports for data flow connectors, IF is the set of
input fields for the configuration of the component, OP is the set of output ports, and
emb ∈ {yes, no} tells whether the component allows for the embedding of other compo-
nents or not (e.g., to model loops). We distinguish three classes of components: Source
components fetch data from the Web or collect user inputs at runtime. They don’t have
input ports: IP = ∅. Data processing components consume data in input and produce
processed data in output: IP, OP 6= ∅. A sink component (the Pipe Output component)
indicates the end of the data processing logic and publishes the output of the mashup,
e.g., using JSON. The sink has neither input fields nor output ports: IF,OP = ∅.

A data mashup (a pipe) can thus be modeled as m = 〈name,C,E,DF, V A〉, where
name uniquely identifies the mashup, C is the set of integrated components, E ⊆ C×C
represents component embeddings, DF ⊆ (∪iOPi)× (∪jIPj) is the set of data flow con-
nectors propagating data from output to input ports, and V A ⊆ (∪kIFk) × STRING
assigns character string values to input fields. Generic strings are interpreted as con-
stants, strings starting with “item.” map input data attributes to input fields. A pipe
is considered correct, if it (i) contains at least one source component, (ii) contains a set
of data processing components (the set may be empty), (iii) contains exactly one sink
component, (iv) is connected (in the sense of graph connectivity), and (v) has value
assignments for each mandatory input field.

A mashup model pattern (see Figure 4 for an example) can thus be seen as a tuple
mp = 〈name, desc, tag, C,E,DF, V A〉, with name, desc and tag naming, describing and
tagging the pattern, and C,E,DF, V A being as defined above, however with relaxed
correctness criteria: a pattern is correct if it (i) contains at least two components, (ii) is
connected, and (iii) has value assignments for each mandatory input field.

For a better understanding of the type of patterns we are looking for, Figure 1 shows
the screen shot of a correct pattern and links its elements to the conceptual model.
In essence, the pattern shows how to enrich an RSS feed with geo-coordinates and
plot the enriched feed on a Yahoo! map. If we analyze the figure, we easily acknowl-
edge that implementing the respective logic requires good knowledge of Yahoo! Pipes:
The URL Builder component requires setting configuration parameters. Components
need to be connected, in order to allow data to flow, i.e., the outputs of the components
must be mapped to inputs of other components. More importantly, plotting news onto

ACM Transactions on Internet Technology, Vol. X, No. Y, Article 67, Publication date: March 2016.

67:4 C. Rodrı́guez, F. Daniel, and F. Casati

Component

Component type

Data flow
connector

Input parameter

Input port

Output port

Value assignment
(manual input of
constant values)

Data mapping
(of attributes of
input items to
input parameters)

Fig. 1. A simple Yahoo! pipe that plots news on a map [Roy Chowdhury et al. 2014].

a map implies knowing that this requires enriching an RSS feed with geo-coordinates,
fetching the actual feed, and only then plotting the items on a map. This logic is nei-
ther trivial nor intuitive without profound prior knowledge – and the example is still
simple.

2.2. Crowdsourcing
Crowdsourcing (CS) is the outsourcing of a unit of work to a crowd of people via an
open call for contributions [Howe 2008]. A worker is a member of the crowd (a human)
that performs work, and a crowdsourcer is the organization, company or individual
that crowdsources work. The crowdsourced work comes in the form of a crowd task,
i.e., a unit of work that requires human intelligence and that a machine cannot solve
in useful time or not solve at all. Examples of crowd tasks are annotating images with
tags, translating text from one language into another, or designing a logo.

A crowdsourcing platform is an online software infrastructure that provides access
to a crowd of workers and can be used by crowdsourcers to crowdsource work. Multiple
CS platforms exist, which all implement a specific CS model: The marketplace model
caters for crowd tasks with fixed rewards for workers and clear acceptance criteria by
the crowdsourcer. The model particularly suits micro-tasks like annotating images and
is, for example, adopted by Amazon Mechanical Turk (https://www.mturk.com) and
CrowdFlower (http://crowdflower.com). The contest model caters for tasks with fixed
rewards but unclear acceptance criteria; workers compete with their solutions for the
reward, and the crowdsourcer decides who wins. The model suits creative tasks like
designing a logo and is, e.g., adopted by 99designs (http://99designs.com). The auction
model caters for tasks with rewards to be negotiated but clear acceptance criteria.
The model suits creative tasks like programming software and is, e.g., adopted by
Freelancer (http://www.freelancer.com).

For the purpose of this paper, we specifically leverage on micro-tasks in marketplace
CS platforms. Crowdsourcing a task in this context involves the following steps: The
crowdsourcer publishes a description of the task to be performed, which the crowd can
inspect and possibly express interest for. In this step, the crowdsourcer also defines
the reward workers will get for performing the task and how many answers (task in-
stances) should be collected (instantiated) per task. Not everybody of the crowd may,
however, be eligible to perform a given task, either because the task requires specific
capabilities (e.g., language skills) or because the workers should satisfy given proper-
ties (e.g., only female workers). Deciding which workers are allowed to perform a task

ACM Transactions on Internet Technology, Vol. X, No. Y, Article 67, Publication date: March 2016.

Mining and Quality Assessment of Mashup Model Patterns with the Crowd 67:5

is called pre-selection, and it may be done either by the crowdsourcer manually or by
the platform automatically (e.g., via questionnaires). Once workers are enabled to per-
form a task, the platform creates as many task instances as necessary to collect the
expected number of answers. Upon completion of a task instance (or a set thereof), the
crowdsourcer may inspect the collected answers and validate the respective quality.
The crowdsourcer rewards only work that passes the check.

2.3. Research Questions
The final goal of this work is to understand whether it is possible to delegate to the
crowd the identification of patterns and the curation of a pattern knowledge base in
situations with “small” datasets (dozens rather than thousands or millions). These are
typical cold start situations in which automatic algorithms perform poorly.

The assumptions underlying this research are that (i) the patterns obtained with the
help of the crowd can be as interesting as the ones obtained by automated algorithms,
(ii) we have access to a repository of mashup models of limited size (in our experiments
we specifically study the case of 40 models); (iii) the identification of patterns can be
crowdsourced as micro-tasks via maketplace-based CS platforms (we study three task
designs with different levels of visibility into the dataset: 1, 3 and 10 models); and (iv)
the assessment of patterns can be crowdsourced as micro-tasks (we study two task
designs that allow workers to rate individual patterns or to pair-wise compare them).

Accordingly, the work aims to answer the following research questions:

RESEARCH QUESTION 1 (PATTERN MINING). Is the crowd able to discover mean-
ingful, reusable mashup model patterns from a dataset of 40 models using micro-task
designs that provide different levels of visibility of the dataset (1/3/10 models)?

RESEARCH QUESTION 2 (QUALITY ASSESSMENT). Is it possible to crowdsource
the quality assessment of identified patterns using task designs that allow the crowd
to rate individual patterns or to pair-wise compare them?

It is important to note that we use the term “mining” with its generic meaning
of “discovering knowledge,” which does not necessarily imply machine learning. In
particular, the intuition of this work is that individual workers are able to identify
reusable fragments (patterns) inside mashup models, where the identified patterns
are not based on statistical recurrence but rather on human inspection and reason-
ing. Also, note that the second research question subsumes the availability of suitable
mashup model patterns, for instance, identified by the crowd, mashup developers or
experts.

3. STUDY DESIGN
3.1. Methodology
The study is designed to address the two research questions and is inspired by the
work presented in [Stolee and Elbaum 2010]. It is divided into two parts. In the first
part, we answer Research Question 1 by crowdsourcing the identification of patterns.
The key design decisions of this part regard the datasets used, the task design, the
selection of workers, and the acceptance criteria for patterns. The second part of the
study is devoted to the assessment of patterns submitted by the crowd. The key design
decisions are related, again, to the design of the tasks, the set of criteria used to assess
the patterns, and the assessment of workers. The detailed design of the experiment
is outlined in Figure 2 that illustrates the conceptual process model of the research
methodology using BPMN4Crowd, a BPMN [OMG 2011] extension for crowdsourcing
we are developing in another project [Tranquillini et al. 2014].

ACM Transactions on Internet Technology, Vol. X, No. Y, Article 67, Publication date: March 2016.

67:6 C. Rodrı́guez, F. Daniel, and F. Casati

Data preparation

Pattern m
ining

Data integration

Evaluation
Data preparation

Evaluation
Pattern validation

N
aive

SplitW
ith(1)

 Filter
 Patterns

R
andom

3
SplitW

ith(3)
 Filter

 Patterns

C
hooseN

SplitW
ith(10)

 Filter
 Patterns

Evaluate
C

hoose
algorithm

 Expert
assessm

.

SplitW
ith(1)

 Individ.
assessm

.

C
hoose

assess
strategy

Pipe
screenshots

Individual
pipes

Pipes
triples

Pipes
groups

N
 patterns

R
 patterns

C
 patterns

N
 valid

R
 valid

C
 valid

M
etrics

Patterns

Expert ranks

Individual
patterns

Single
ranks

SplitInto(2)

Pattern
sets

C
om

bination(2)
 Pair-w

ise
 assessm

.

Pattern
com

bos
Pair
ranks

M
achine997

M
achine40

Pipes
m

odels
(997)

M
40

patterns

M
997 patterns

R
eport on

research
question 1

G
et

screenshots

Sam
ple

pipes
(40)

M
achine task

H
um

antask
C

row
d task

C
ollection of

data object
C

ollection of
collections

D
ata splitting
operation

D
ata filter

operation
Start node

End node
Split/m

erge
gatew

ay
C

ontrol flow
connector

D
ata flow

connector

M
odeling notation
(B

PM
N

4C
row

d)

R
eport on

research
question 2

Load pipes
 Sam

ple
 pipes

Fig.
2.

P
rocess

m
odel

of
the

m
ethodology

underlying
the

study
described

in
this

article
expressed

in
a

B
P

M
N

extension
for

crow
dsourcing

processes
(B

P
M

N
4C

row
d).T

he
process

com
prises

crow
d,hum

an
and

m
achine

tasks
for

w
orkers,researchers

and
w

eb
services,respectively,and

describes
how

the
different

experim
ents

are
conducted

and
integrated.O

n
top

ofthe
process,w

e
identify

the
high-levelphases

ofthe
study.

ACM Transactions on Internet Technology, Vol. X, No. Y, Article 67, Publication date: March 2016.

Mining and Quality Assessment of Mashup Model Patterns with the Crowd 67:7

The study starts with downloading a set of mashup models from Yahoo! Pipes. The
collected dataset consists of 997 pipes randomly selected from the “most popular” pipes
category of Yahoo! Pipes’ online repository. We opted for this category because it is
very common to find pipes in Yahoo! Pipes that are just half elaborated or simply do
not work. By focusing our attention on this category, pipes are most likely to be func-
tional and useful. Pipes models are represented in JSON. The “small dataset” was
constructed by randomly selecting 40 pipes out of the 997 (making sure we kept only
pipes that were runnable and meaningful). To feed the crowd-based mining experi-
ments, we also collected the screen shots of each of the 40 pipes through the Yahoo!
Pipes editor.

Once the datasets are constructed, we run two pattern identification experiments
based on: (i) a crowd-based approach with three different designs for the pattern iden-
tification task and (ii) an automated mining approach run over two datasets of differ-
ent sizes (with 40 and 997 pipes) (Section 4). The crowd-based approach aims to study
the performance of the crowd in function of different levels of dataset visibility (to
understand if the crowd also looks for support); the automated approach studies the
performance of the machine in function of different dataset sizes and minimum sup-
port levels. The SplitWith(n) operator splits the input dataset into collections of 1, 3
and 10 pipes; each collection is processed by a corresponding task design of the crowd-
based approach (as explained in Section 4.1). The three crowd tasks are followed by
a Filter operator that drops patterns that have less than 2 components, are not con-
nected, and do not have all input fields filled with meaningful information. This last
part of the Filter operator is done manually by an expert, e.g., to filter out meaningless
text like random key inputs such as “asdf” and “qwerty”. Then, all patterns are used
to compute a set of metrics (number of patterns, average pattern size, cost per pattern)
that, in turn, are used to answer Research Question 1.

Starting from the set of patterns produced by the best crowd approach, the process
proceeds with the study of whether the crowd can be used to validate patterns (Sec-
tion 5). We compare three approaches: expert assessment (us) vs. crowd assessment of
individual patterns vs. crowd assessment of pairs of patterns. Patterns are split into
2 equal-sized subsets for the experts, subsets of size 1 for the first crowd assessment,
and pairs of patterns for the second crowd assessment. The process models also the ex-
perts’ task as a crowd task, in that they too can be seen as a crowd (a group of two). The
study ends with a comparison of the results and the answer to Research Question 2.

3.2. Crowdsourcing Approach
Figure 3 illustrates the approach we followed to crowdsource the crowd mining and
assessment tasks of the study using the crowdsourcing platform CrowdFlower (http:
//www.crowdflower.com). The deployment of tasks on CrowdFlower requires the config-
uration of suitable forms to collect data from the crowd, the uploading of the dataset
that contains the units of work (i.e., the mashup models and patterns), the prepa-
ration of the qualification tests for workers, among other tasks that are specific to
CrowdFlower. Once the tasks are deployed, CrowdFlower posts them to third-party
platforms, such as Amazon Mechanical Turk or MinuteWorkers, where the crowd can
actually perform the requested work.

Each pattern identification task points to an external pattern selector page where
the crowd can select patterns from the mashups in the dataset. Each mashup model is
configured to be shown to at least three workers, in order to guarantee that each model
gets properly inspected, and a monetary reward is set for each pattern provided by the
crowd. For each of the three crowd approaches, the pattern selector provides a differ-
ent implementation (discussed in the next section). The pattern selector page consists
in a standard Web application implemented in Java, HTML, CSS and JavaScript, that

ACM Transactions on Internet Technology, Vol. X, No. Y, Article 67, Publication date: March 2016.

67:8 C. Rodrı́guez, F. Daniel, and F. Casati

Web server

Model
repository

Pattern
repositoryPattern selector page

CS platform n

CS platform 1

CS meta-platform

...

Crowdsourcer Crowdsourcer

Crowd
works on

deploys tasks
operates

works on
posts task

posts task

links

links

loads
models

submits
patterns

Quality
assessm.

produces additional metadata
and quality assessments

Fig. 3. Approach to crowd-based pattern mining with CrowdFower: patterns are collected via a dedicated
Pattern Selector application and assessed using standard forms as provided by CrowdFlower.

renders the screen shot(s) of the pipe(s) to be analyzed. The worker can also provide a
name, a description and a list of tags to equip the pattern with additional metadata.
Inputs provided by the workers are validated, e.g., to check that a worker indeed se-
lects a pattern in the mashup model. The Web application is hosted on a Web server
operated by us. The Web server hosts a model repository where the mashup models are
stored and from where the pattern selector page gets the models. It also hosts a pattern
repository where the patterns selected by the crowd are stored for further analysis.

For the quality assessment tasks, instead, CrowdFlower provides enough support to
implement suitable evaluation questionnaires and to crowdsource the tasks without
the need for any external application. Collected quality assessments are stored for
further analysis in a dedicated quality assessments repository on our Web server.

4. MINING MODEL PATTERNS
To answer Research Question 1 (Section 2.3), we implemented three different crowd
task designs and one automated mining algorithm. The three designs are an attempt
to compare the performance of the crowd by varying the number of pipes per task, the
key property that distinguishes the crowd approaches from the automated one; they
do not yet represent an in-depth study of how to identify the best design. The idea
of presenting workers with different levels of insight into the available dataset stems
from the background of this work, i.e., pattern mining, which is commonly based on
the concept of statistical support (repetition). The question the three designs aim to
answer, hence, is not only whether the crowd is able to identify patterns, but also if it
is able to spot repetitions and how much insight into the dataset is beneficial, if at all.
The automated algorithm is run with different support levels and dataset sizes and
the results are compared to the ones obtained by the crowd-based approach.

4.1. Mining Tasks and Algorithms
A core decision when crowdsourcing a task is how to design the UI used to interact
with workers. In general, all crowdsourcing platforms available today allow the crowd-
sourcer to design form-based user interfaces directly inside the crowdsourcing plat-
form. For the crowdsourcing of simple tasks, such as the annotation of images or the
translation of a piece of text, this is sufficient to collect useful feedback. In more com-
plex crowdsourcing tasks, such as our problem of identifying patterns inside mashup

ACM Transactions on Internet Technology, Vol. X, No. Y, Article 67, Publication date: March 2016.

Mining and Quality Assessment of Mashup Model Patterns with the Crowd 67:9

Name and description of pipe
sources from Yahoo! Pipes

The pipe model to be analyzed by the worker. The model is a clickable image map that
allows the worker to define a pattern by selecting its components.

Additional input fields for the specification of pattern name, description and meta-data

Unselected
component

Selected
component

Fig. 4. Task design for the identification of mashup model patterns (Naı̈ve setting).

models, textual, form-based UIs are not enough and a dedicated, purposefully designed
graphical UI (the pattern selector page) is needed.

In order to make workers feel comfortable with the selection of patterns inside pipes
models, we wanted the representation of the pipes to be as close as possible to what
real pipes look like. In other words, we did not want to create an abstract or simpli-
fied representation of pipes models (e.g., a graph or textual description) and, instead,
wanted to keep the full expressive power of the original representation. We therefore
decided to work with screen shots of real pipes models, on top of which we allow work-
ers to select components of the model and to construct patterns by simply clicking on
the respective components. Figure 4 shows a screen shot of the UI we implemented for
selecting patterns inside a pipes model; the UI shows a pipe with a total of 9 compo-
nents, of which 5 have been selected by the worker to form a pattern (the green-shaded
components). In this case, the selected pattern performs a useful task (in the context
of Feed processing) that consists in fetching (unsorted) feeds from the web and tak-
ing only the N (3 in this case) most recent feeds. The worker only selects components,
the derived pattern contains the components along with the respective data flow con-
nectors, value assignments and data mappings (this to keep the pattern identification
simple). Next to selecting a pattern, the worker is also asked to provide additional
information about the pattern, such as a name, description and at least 3 tags. The
worker may further tell how often he/she has already seen or used the pattern before,
and how useful he/she thinks the pattern is.

In order to make sure that workers know Yahoo! Pipes, we include a set of five
multiple choice pre-selection questions in each of the task designs, such as “Which of
the following components can be embedded into a loop?” or “What is the maximum
number of Pipe Output modules permitted in each pipe?” (see Appendix A for a screen

ACM Transactions on Internet Technology, Vol. X, No. Y, Article 67, Publication date: March 2016.

67:10 C. Rodrı́guez, F. Daniel, and F. Casati

ALGORITHM 1: Machine
Data: repository of mashup models M , minimun support (minsuppcdf) for components and dataflows, minimum support

(minsupppar) for parameter values
Result: set of patterns 〈C,E,DF, V A〉.

1 DBg = array(); // create database of graph representations of mashups
2 foreach m ∈M do
3 g = getGraphRepresentation(m);
4 append(DBg, g);

5 FG = mineFrequentSubraphs(DBg,minsuppcdf); // mine frequent sub-graphs
6 DBmc = array(); // retrieve all instances of each sub-graph from dataset M
7 foreach m ∈M do
8 foreach fg ∈ FG do
9 if getGraphRepresentation(m) contains fg then

10 mf = getSubgraphInstance(m, fg);
11 append(DBmc[fg],mf);

12 Patterns = set(); // create database of mashup patterns
13 foreach MC ∈ DBmc do
14 DBVA = array(); // mine frequent parameter values (including data mappings)
15 foreach mc ∈MC do
16 foreach c ∈ mc.C do
17 append(DBVA, c.V A);

18 FIva = mineFrequentItemsets(DBVA,minsupppar);
19 foreach V A ∈ FIva do
20 foreach mc ∈MC do
21 if V A ∈ mc then
22 Patterns = Patterns ∪ {〈mc.C,mc.E,mc.DF, V A〉}; // assemble patterns

23 return Patterns; // return database of mashup patterns

shot of the questionnaire used). In order for a worker to be paid, he/she must correctly
answer these questions, for which we already know the answers (so-called gold data).

4.1.1. Naı̈ve Task Design. This task design presents the worker with one pipe and asks
him/her to identify a fragment of the pipe that consists of components that jointly
perform a useful task and that can be reused to solve a recurrent problem. The task
design is exactly that in Figure 4, which provides the maximum freedom in selecting
the components that make up a pattern.

4.1.2. Random3 Task Design. This task design randomly selects 3 pipes from the avail-
able dataset of 40 pipes and shows them to the worker; the first pipe allows the worker
to identify patterns as described in Figure 4. Figure 13 in Appendix A illustrates the
complete task UI for this setting. This design provides the worker with access to more
data, which may help him/her identify repetitive patterns. Again, the worker is asked
to provide additional metadata via the form.

4.1.3. ChooseN Task Design. This task design randomly selects 10 pipes out of the
dataset of 40 pipes and allows the worker to select again n ∈ {1..10} pipes for the
identification of patterns. First the worker selects the pipes of interest, then he/she
is presented with a page for pattern identification similar to the one adopted for the
Random3 setting. Figure 14 in Appendix A illustrates the UI that allows the worker
to choose the pipes of interest. This task design provides the worker with most infor-
mation for the identification of patterns.

4.1.4. Machine Algorithm. Automatically mining mashup patterns of the form mp =
〈C,E,DF, V A〉 requires identifying repetitive fragments that include the components
C, possible component embeddings E, the data flows DF among the components, and
the values V A for their input parameters. Doing so is non-trivial, because we need to

ACM Transactions on Internet Technology, Vol. X, No. Y, Article 67, Publication date: March 2016.

Mining and Quality Assessment of Mashup Model Patterns with the Crowd 67:11

mine data at different levels of granularity and make sure that the resulting patterns
are indeed meaningful. We do this by means of Algorithm 1 (Machine), which mines
what in [Rodrı́guez et al. 2014b] we called “multi-component patterns.” The algorithm
first identifies recurrent components and data flows (lines 1- 5), then it identifies the
most recurrent value assignments and data mappings for the identified components
(lines 6-18), and finally assembles everything into connected patterns (lines 19-22).
Data mappings of input data attributes to input fields are dealt with by the parameter
values that have a prefix “item.” for the input fields that accept dynamic input data.
The core mining tasks are based on a standard frequent subgraph mining algorithm
(line 5) and a standard frequent itemset mining algorithm (line 18) [Tan et al. 2005].

4.2. Experiment Design
In order to be able to provide clear insights into the ability of the crowd to mine mashup
model patterns in the presence of small datasets, we articulate Research Question 1
into the following sub-questions:

— Feasibility: does crowdsourcing the tasks Naive, Random3 or ChooseN allow one to
mine reusable mashup model patterns from mashup models?

— Value: do model patterns identified through Naive, Random3 or ChooseN contain
more domain knowledge than automatically mined patterns?

— Cost effectiveness: is pattern identification with Naive, Random3 or ChooseN more
cost-effective than with a dedicated domain expert?

The sub-questions interpret crowd-based pattern mining as a solution that brings
together characteristics of both automated algorithms and domain experts and thus
compares them with the quality of automated algorithms, on the one hand, and the
cost of involving a domain expert, on the other hand.

4.2.1. Experiment Design and Dataset. The three crowd approaches are implemented as
outlined above using the CS platform CrowdFlower. Running them is a joint manual
and automated effort: the pattern selector application takes care of initializing the
dataset (the pipes models), partitioning it, and mapping partitions to tasks at runtime.
The actual tasks are deployed manually on CrowdFlower and executed by the crowd.
Filtering out valid patterns is again done manually. For each pipe, we request at least
3 judgments, estimated a maximum of 300 sec. per task, and rewarded USD 0.10 per
task. The Machine algorithm is implemented in Java. The core parameter used to fine-
tune the algorithm is the minimum support that the mined sub-graphs must satisfy
(minsuppcdf); we therefore use this variable to test and report on different test settings.

The dataset available consists of 997 pipes (with 11.1 components and 11.0 connec-
tors on average) randomly selected from the “most popular” pipes category of Yahoo!
Pipes’ online repository. The JSON representation of the pipes is used by the automatic
mining algorithm and to validate inputs in the task UIs; the screen shots are used to
collect patterns from the crowd as explained earlier. We run the Machine algorithm
with datasets of 997 (big dataset) and 40 pipes (small dataset). We use Machine997

and Machine40 to refer to the former and the latter setting, respectively. We run Naive,
Random3 and ChooseN only with 40 pipes (small dataset).

4.2.2. Evaluation Metrics. While for automated mining it is clear by design how the out-
put of an algorithm looks like, this is not as clear if the identification of patterns is
delegated to the crowd. As described earlier, workers may not clearly understand the
goals of a task or cheat and, hence, not provide meaningful data. To filter out those
patterns that we can instead reasonably trust, we define a set of minimum criteria
for crowd-mined patterns: a valid mashup pattern is a correct pattern that consists
of at least two modules and where the modules are connected, the name and descrip-

ACM Transactions on Internet Technology, Vol. X, No. Y, Article 67, Publication date: March 2016.

67:12 C. Rodrı́guez, F. Daniel, and F. Casati

tion of the pattern are not empty, and the description and the pattern structure match
semantically. The first three criteria we enforce automatically in the pattern identi-
fication UIs of the three crowd tasks. Whether the description and pattern structure
match semantically, i.e., whether the description really tells what the pattern does, is
assessed manually by experts (us). The result of this analysis is a Boolean: either a
pattern is considered valid (and it passes the filter) or it is considered bad (and it fails
the filter). Note that with “valid” we do not yet assert anything about the actual value
of a pattern; this can only be assessed with modelers using the pattern in practice. The
same expert-based filter is usually also applied to the outputs of automated mining al-
gorithms and does not introduce any additional subjective bias compared to automated
mining scenarios. These pre-filtering criteria are intimately related with the context
we are dealing with (i.e., Yahoo! Pipes); other contexts may require different criteria.

In order to compare the performance of the five test settings, we use three metrics to
compare the pattern sets they produce in output: the number of patterns found gives an
indication of the effectiveness of the algorithms in finding patterns; the average pattern
size, computed as the average number of components of the patterns in the respective
output sets, serves as an indicator of how complex and informative identified patterns
are; and the distribution of pattern sizes shows how diverse the identified patterns
are in terms of complexity and information load. The cost per pattern of the different
approaches allows us then to reason on the cost-efficiency.

We use of the size of patterns/pipes (number of components) as a proxy to mea-
sure complexity. This is an approximation of the true complexity of model patterns. In
general, complexity is multi-faceted and may comprise different aspects, such as Mc-
Cabe’s cyclomatic complexity [McCabe 1976] for generic code that counts the number
of possible independent paths through the code (indeed, model patterns can be seen as
fragments of code). Given the context of this work, i.e., recommending model patterns
inside modeling environments, the size of patterns is however a good approximation of
how pattern complexity is perceived by users inside the modeling environment.

4.3. Results

10

320

17
3

334

1442

326

174

Retained
patterns

Started crowd
task instances

Submitted
patterns

Naive Random3 ChooseN

Fig. 5. Crowd task instances started and patterns.

Figure 5 summarizes the task instances
created and the patterns collected by
running the three crowd tasks. The
crowd started a total of 326 task in-
stances of Naive, while it submitted only
174 patterns through our pattern selec-
tor application. This means that a total
of 152 task instances were abandoned
without completion. Out of the 174 pat-
terns submitted, only 42 patterns satis-
fied our criteria for valid mashup pat-
terns; the 42 valid patterns were identified by 8 different workers. Running Random3
and ChooseN produced a similar number of task instances each (320 and 334), while
the number of submitted patterns significantly dropped (17 and 14), as did the number
of valid patterns retained (10 and 3). The difference between submitted and retained
patterns confirms the viability of the valid pattern criteria.

For Naive (which shows the best results), we checked whether there is a correlation
between the complexity of a pipe and the number of patterns submitted. The Pearson’s
correlation coefficient computed for all submitted patterns is rS = −0.1422, while for all
retained patterns it is rR = 0.0750. These values are quite low and we cannot conclude
that there is a significant association between the complexity of pipes and the number

ACM Transactions on Internet Technology, Vol. X, No. Y, Article 67, Publication date: March 2016.

Mining and Quality Assessment of Mashup Model Patterns with the Crowd 67:13

(a) Machine997(gray) compared to the crowd (black) (b) Machine40 (gray) compared to the crowd (black)

N
ai

ve
R

an
do

m
3

C
ho

os
eN

N
ai

ve
R

an
do

m
3

C
ho

os
eN

Fig. 6. Numbers of patterns produced by automated mining under varying minimum support levels. The
charts also report the number of patterns produced by the three crowd-based mining algorithms (in black).

(a) Machine997(gray) compared to the crowd (black) (b) Machine40 (gray) compared to the crowd (black)

N
ai

ve

R
an

do
m

3
C

ho
os

eN

N
ai

ve
R

an
do

m
3

C
ho

os
eN

Fig. 7. Average size of the patterns produced by automated mining under varying minimum support levels.
The average sizes of the patterns produced by the crowd-based mining algorithms are reported in black.

of patterns submitted or retained, nor could we find any threshold for the complexity
of pipes above/below which the performance of the crowd drops.

The charts in Figures 6–8 report on the numbers of patterns, average pattern sizes
and the distribution of pattern sizes obtained by running Machine997 and Machine40

with different minimum relative support levels supmin. The bars in gray are the results
of theMachine algorithm; the black bars represent the results of the crowd approaches.
For comparison, we placed these latter at a support level of supmin = 0.025, which
corresponds to 1/40 = 0.025, in that we ask workers to identify patterns from a single
pipe without the need for any additional support (even if more than 1 pipe is shown).

4.3.1. Feasibility. Figure 6(a) illustrates the number of patterns found by Machine997.
The number quickly increases for Machine997 as we go from high support values to low
values, reaching almost 500 patterns with supmin = 0.01. Figure 6(b) shows the results
obtained with Machine40. The lowest support value for Machine40 is supmin = 0.05,
which corresponds to an absolute support of 2 in the dataset. It is important to note
that only very low support values produce a useful number of patterns. In both figures,
the black bar represents the 42, 10 and 3 patterns respectively identified by Naive,
Random3 and ChooseN .

The two figures show the typical problem of automated pattern mining algorithms:
only few patterns for high support levels (which are needed, as support is the only cri-
terion expressing significance), too low support levels required to produce useful out-
put sizes with small datasets (our goal), and an explosion of the output size with large
datasets. Figure 5 shows that Naive is instead able to produce a number of patterns
in output that is similar to the size of the dataset in input; Random3 and ChooseN do

ACM Transactions on Internet Technology, Vol. X, No. Y, Article 67, Publication date: March 2016.

67:14 C. Rodrı́guez, F. Daniel, and F. Casati

(a) Machine997:
44 patterns with
support of 0.05

(b) Machine40:
35 patterns with
support of 0.05

(c) Naive
with 42 patterns

(d) Random3
with 10 patterns

(e) ChooseN
with 3 patterns

Fig. 8. Pattern size distribution by the five algorithms. The histograms of Machine997 and Machine40

refer to the run with the minimum support level that produced a number of patterns similar to Naive.

not perform as good. Notice also that, while Figure 6 reports on all the patterns found
by Machine, the data for the crowd algorithms include only valid patterns. This means
that not only is Naive able to find a good number of patterns, but it is also able to find
practically meaningful patterns. Understanding the actual value of the patterns would
require an own study in which the users of the patterns are involved. We discuss next
the value of the resulting patterns from our perspective and that of our experimental
setting.

4.3.2. Value. Figure 7 shows the average pattern sizes of Machine997 and Machine40

compared to that of the crowd approaches. In both settings, the average pattern size ob-
tained with Naive clearly exceeds the one that can be achieved with Machine, even for
very low support values (0.01); Random3 and ChooseN perform similarly to Machine.
With Figure 8, we look more specifically into how these patterns look like by compar-
ing those runs of Machine997 and Machine40 with the crowd approaches that produce
a similar number of patterns in output as Naive. In both settings this happens for
supmin = 0.05 and produced 44 and 35 patterns, respectively. Figures 8(a) and (b) show
that automatically mined patterns are generally small (sizes range from 2–4), with a
strong prevalence of the most simple and naı̈ve patterns (size 2). Figure 8(c), instead,
shows that the results obtained with Naive present a much higher diversity in the
pattern sizes, with a more homogeneous distribution and even very complex patterns
of sizes that go up to 11 and 15 components. Random3 and ChooseN (Figures 8(d) and
8(e)) again do not perform better than Machine. Naive is thus able to collect patterns
that contain more complex logics and that are more informative; that is, they provide
richer examples of how to use components and how to combine them together. This can
be attributed to the higher freedom in selecting components when working with Naive
and to the fact that the crowd tends to work on a least-effort basis (it is harder to
come up with elaborated patterns when working with Random3 and ChooseN). These
patterns also come with a characterizing name, description and list of tags. These an-
notations not only enrich the value of a pattern with semantics but also augment the
domain knowledge encoded in the pattern and its reusability. Patterns identified with
Naive thus contain more domain knowledge than the patterns mined automatically
and the ones mined with Random3 and ChooseN ; these latter instead produce pat-
terns of similar size to the automatically mined patterns, with ChooseN performing
worst among all studied approaches.

ACM Transactions on Internet Technology, Vol. X, No. Y, Article 67, Publication date: March 2016.

Mining and Quality Assessment of Mashup Model Patterns with the Crowd 67:15

0.42$

17.56$

Naive Random3 ChooseN

1.76$

17.56$

5.58$

17.56$

Fig. 9. Total cost of crowdsourcing experi-
ments (gray) and cost per pattern (black).

4.3.3. Cost Effectiveness. The above results for
Naive show that crowd-based pattern mining
can outperform machine-based mining for small
datasets in terms of productivity (more specif-
ically, the ratio of number of patterns found
per number of pipes in input are 35/40 = 0.86
and 42/40 = 1.05 for Machine40 and Naive, re-
spectively). The alternative to automated mining
would be asking an expert to identify patterns,
which is expensive. Here, crowd-based mining
also outperforms the expert. With a cost per pattern of USD 0.42 and a running time
of approximately 6 hours, Naive proves to be a very competitive alternative to hiring a
domain expert: we paid only USD 2.83 per hour, a price that is hard to beat compared
to hiring a domain expert. Given the low number of patterns identified by Random3
and ChooseN , their cost per pattern is significantly higher (USD 1.76 and USD 5.58),
which makes them less suitable also from an economical point of view.

4.4. Discussion
The above results manifest a high sensitivity of the crowd mining algorithms to the de-
sign of the crowd tasks. In this respect, we distinguish between intuitiveness (includ-
ing ease of use) and complexity of tasks. Regarding the intuitiveness, we considered
collecting patterns via textual input (e.g., the list of component names in a pattern)
or via abstract data flow graphs (automatically constructed from the JSON represen-
tation of pipes). After a set of informal, pre-experiment tests of the crowd task de-
signs to adopt, we opted for the screen shots. This has proven to be the representation
workers seem to be most familiar with (screen shots do not introduce any additional
abstraction), and this is the approach we implemented in the three crowd tasks. The
identification of the design to adopt was a best effort task not aimed at identifying
the best possible design, which we consider future work. As for the complexity of the
tasks, the Naive, Random3 and ChooseN algorithms provide the worker with access
to 1, 3 and 10 pipes, respectively, that is, with different information loads. The three
algorithms produced a comparable number of task instances, while they strongly differ
in the number of patterns submitted and retained. The three alternative designs al-
lowed us to understand whether more visibility into the available dataset would allow
the crowd to spot repeated patterns, or whether pattern identification by the crowd is
mostly based on semantic/functional considerations. The results we obtained from our
experiments confirm that the side effect of such expanded visibility inevitably leads
to more complexity, which in turn leads to high abandon rates (see Figure 5). We in-
terpret this as evidence that high information loads only scare people away (instead
of helping them) in the context of pattern identification. The lesson learned is thus to
keep tasks as simple as possible, that is, to apply the KISS (Keep It Simple, Stupid)
principle. The result, although in line with similar findings in the area of crowdsourc-
ing [Mason and Watts 2010], is particularly important in the area of pattern mining
that instead typically requires the analysis of large datasets to produce viable outputs.

In order to assure workers had the necessary mashup knowledge, we performed a se-
lection using gold data. Yet, our questions were too tough in our first tests, and we had
to lower our expectations. What happened with the tough questions was that it was
hard to process the whole dataset and at the same time meet our valid pattern criteria.
Lowering the toughness of the questions allowed us to process the whole dataset and
to obtain more patterns, not all of them however of good quality, as reported in previ-
ous sections. We also noticed a natural selection phenomenon: the majority of patterns
was submitted by only few workers. We assume these were workers with good knowl-

ACM Transactions on Internet Technology, Vol. X, No. Y, Article 67, Publication date: March 2016.

67:16 C. Rodrı́guez, F. Daniel, and F. Casati

edge in Pipes that simply liked this kind of modeling tasks and, therefore, submitted
multiple patterns not only for the sake of the reward but also for personal satisfaction.

Despite the selection of workers, it is strongly advised to check all inputs for formal
validity (e.g., no empty strings), otherwise workers may just skip inputs or input fake
content (e.g., a white space). Our task designs assure that only correct patterns can be
submitted, yet the difference between submitted and retained patterns (the semantic
check) illustrated in Figure 5 highlights the importance of advanced input validation.

Regarding the robustness of the above results against varying reward amounts, we
did not notice any reduction of the number of tasks instantiated by the crowd or the
number of patterns collected if we lowered the reward from USD 0.10 down to USD
0.05 (in an independent, pilot experiment). Our feeling is that we could have gotten the
same results also for less money without any loss of quality, however, demonstrating
this would require additional, purposefully designed experiments.

We also inspected manually the diversity of collected patterns and noticed a pref-
erence for complex combinations of components over more naive ones, which results
in a high diversity of patterns. At a more fine-grained detail, it is however possible to
identify overlapping parts, especially regarding the use of popular pairs of components
(e.g., it is common to see the association of the Fetch Feed and the URL Builder compo-
nents). The inspection of the structure and content of the patterns reveals a preference
for self-contained configurations, able to provide useful functions on their own.

The fairness of the comparison with an algorithm based on support as a measure of
interestingness may be debatable, as such is expected to work poorly on small datasets.
However, this poor performance establishes the triggering condition to look for an al-
ternative solution, such as crowd-based mining and, thus, represents a baseline. In
addition, the studied scenario is typical in model-driven development paradigms: it
is very rare to find repositories with millions of models where data mining based
approaches can take full advantage (e.g., SAP’s reference process model repository,
one of the biggest publicly available, contains only a total of 604 models [Dijkman
et al. 2011]). Perhaps dedicated rule-based systems, instance-based learning, case-
based reasoning, or other automated approaches could allow a fairer comparison, yet
we were not able to identify any readily available, suitable algorithms and therefore
relied on our previous automated algorithm to understand whether the crowd-based
approach may represent a valid alternative. In any case, automated approaches in the
current state of the literature would still hardly be able to beat humans in providing
rich descriptions for patterns and, what is even harder, useful prescriptions on how to
use them.

5. ASSESSING MODEL PATTERNS
To answer Research Question 2, we focus on the patterns obtained by Naive. We im-
plemented one expert quality assessment experiment (that serves as the ground truth)
and two crowd quality assessment experiments to validate the patterns.

5.1. Assessment Tasks
The crowd tasks for this experiment consist in questionnaires created within Crowd-
Flower that allow us to visualize the patterns and to collect ratings using multiple-
choice questions. We discuss next the two approaches used for pattern assessment.

5.1.1. Individual Expert/Crowd Assessment. The first task design is shared by both the
Expert assessment and the Individual crowd assessment and aims to test if the crowd
interprets individual patterns similarly to an expert. Each task shows one pattern
(screen shot, name, description, list of tags) and asks for the assessment of its under-
standability, reusability, usefulness and novelty (we discuss these later in this section)

ACM Transactions on Internet Technology, Vol. X, No. Y, Article 67, Publication date: March 2016.

Mining and Quality Assessment of Mashup Model Patterns with the Crowd 67:17

using a Likert scale (from 1-negative to 5-positive). We also include the pre-selection
questionnaire already used for the mining tasks, in order to make sure that workers
are knowledgeable in Yahoo! Pipes. Figure 15 in Appendix B shows the task design.

5.1.2. Pair-Wise Crowd Assessment. This task design implements the PairWise crowd
experiment that aims to study whether it is possible to obtain an overall pattern rank-
ing similar to the one by the experts. It shows a pair of patterns and asks workers to
identify the one with the highest understandability, reusability, usefulness and nov-
elty. Patterns are thus not assessed individually, but in relation to other patterns,
which has proven to help workers make better decisions [Jung and Lease 2011]. To
compute a (partial) ranking, each pattern is given 6 chances to be voted. The task
again includes the pre-selection questionnaire used in the previous tasks. See the task
UI design in Figure 16 in Appendix B.

5.2. Experiment Design
Answering the second research question requires again identifying a set of sub-
questions that can be studied in detail. The two questions we want to study in the
following to understand whether the crowd is able to assess the quality of mashup
patterns are:

— Replaceability: does crowd-based quality assessment with Individual and PairWise
produce similar results than an expert-based assessment?

— Reliability: In crowd assessments collected with Individual and PairWise, is the
bias introduced by misunderstandings, cheaters, malevolent workers negligible?

In order to answer these questions, we compare theExpert, Individual and PairWise
assessment approaches using the following data and metrics.

5.2.1. Experiment Design and Dataset. The Expert assessment is done locally on our own
machine; the Individual and PairWise crowd assessments are again implemented on
CrowdFlower. For both crowd tasks we estimated a maximum duration of 300 sec.
per task and payed a reward of USD 0.02 per task. The Individual setting asks for
exactly 3 judgments per pattern, a requirement that is configured in CrowdFlower. The
PairWise setting makes sure that each pattern appears exactly 6 times in different
pair combinations. All tasks use as input dataset the 42 patterns obtained by Naive.

5.2.2. Metrics and Statistical Tests. We use four criteria to assess the quality of patterns.
The understandability of a pattern refers to how comprehensible the pattern is; a pat-
tern is understandable if one can easily figure out what the pattern does and how to
use it. The usefulness of a pattern refers to the utility of the pattern, i.e., to how handy
and convenient it is to use the pattern for solving a given problem. The reusability of
a pattern is the extent to which the pattern can be used in different contexts. Finally,
the novelty of a pattern refers to how new and innovative the pattern is. Appendix C
discusses examples of good and bad patterns for each of these criteria.

Replaceability: To compare the Expert and Individual assessments, we use Mann-
Whitney’s U test (non-paired) to test whether they produce comparable ratings. Both
experiments produce ordinal data (Likert scale) that generally do not meet the normal-
ity condition. We further compute Spearman’s correlation coefficient (for paired ordinal
data) for Individual and PairWise against Expert. Finally, we order all patterns in de-
creasing order for each of the three approaches and quality criteria individually and
check the precision (P = TruePos

TruePos+FalsePos) and recall (R = TruePos
TruePos+FalseNeg) of the top-

ranked patterns by Individual and PairWise compared to Expert (the ground truth).
We specifically compute P and R for the 25th, 50th and 75th percentiles to test different
quality assessment policies (hard vs. soft).

ACM Transactions on Internet Technology, Vol. X, No. Y, Article 67, Publication date: March 2016.

67:18 C. Rodrı́guez, F. Daniel, and F. Casati

0"

1"

2"

3"

4"

5"

22
5"

37
3"

39
5"

26
3"

28
4"

30
0"

33
0"

33
2"

34
3"

35
3"

36
7"

37
7"

22
7"

24
8"

25
3"

26
9"

27
3"

27
4"

27
7"

30
5"

31
1"

31
9"

32
0"

32
2"

33
6"

33
9"

34
6"

34
7"

35
2"

39
1"

23
0"

25
0"

30
9"

33
4"

34
0"

34
5"

37
9"

38
5"

38
9"

39
7"

27
8"

36
2"

Patterns (IDs.)

V
ot

es
 c

ou
nt

(b) Understandability pattern ranking in decreasing order of aggregated votes

1"

2"

3"

4"

5"

Reusability" Novelty" Usefulness" Understandability"

Individual Expert
R

at
in

gs

Reusability Novelty Usefulness Understan-
dability

(a) Individual vs. Expert rating (avg of Likert ratings)

Fig. 10. Quality assessment results: (a) Individual/Expert ratings, (b) PairWise understandability rank-
ing.

0"
0.1"
0.2"
0.3"
0.4"
0.5"
0.6"
0.7"
0.8"
0.9"
1"

0" 0.1" 0.2" 0.3" 0.4" 0.5" 0.6" 0.7" 0.8" 0.9" 1"

PairWise"vs."Expert"

Individual"vs."Expert"

0"
0.1"
0.2"
0.3"
0.4"
0.5"
0.6"
0.7"
0.8"
0.9"
1"

0" 0.1" 0.2" 0.3" 0.4" 0.5" 0.6" 0.7" 0.8" 0.9" 1"

0"
0.1"
0.2"
0.3"
0.4"
0.5"
0.6"
0.7"
0.8"
0.9"
1"

0" 0.1" 0.2" 0.3" 0.4" 0.5" 0.6" 0.7" 0.8" 0.9" 1"

(c)"75th"percenBle"(b)"50th"percenBle"(a)"25th"percenBle"

Pr
ec
is
io
n"

Recall"

Fig. 11. Precision and recall of the Individual and PairWise assessment experiments with varying selec-
tivity (top 25, 50, 75 percentiles) for understandability (2), usefulness (3), reusability(4), novelty (◦).

Reliability: We use Fiedman’s analysis of variance to test whether the Individual
ratings provided for each criteria are comparable among each other. The use of this
test is again motivated by the use of the Likert scale for ratings and the non-normality
of the distribution of the dataset; in addition, since we test a set of criteria that refer
to the same set of patterns and patterns are assessed by the same set of workers, we
cannot assume independence in this test. Spearman’s correlation coefficient provides
further insight into the strength and direction of the associations for each criteria. For
the PairWise assessment, we compare whether there is a bias in the preferences ex-
pressed by the crowd toward either the first or the second pattern shown in the task.
The samples (rankings of first patterns vs. rankings of second patterns) are depen-
dent, expressed with ordinal data, and follow a non-symmetrical distribution. We thus
use the Wilcoxon signed-rank test for this decision. In all statistical tests we use a
significance level of α = 0.05.

5.3. Results
Figures 10 and 11 present the aggregate assessments by Expert and Individual, one of
the pattern rankings obtained by PairWise, and the respective precision/recall charts.
We use these and Table I to study replaceability. Tables II–III help us study reliability.

5.3.1. Replaceability. Two observations can immediately be made from Figure 10(a):
(i) there seems to be an important difference between the average ratings produced
by Expert and Individual, and (ii) Individual seems to provide similar ratings for all
criteria. Here, we consider only (i); we leave (ii) for the discussion of the reliability sub-
question. We use Mann-Whitney’s U test (non-paired) with the null hypothesis H0 :
ηind = ηexp (the medians of the two experiments are equal) to test whether experts and

ACM Transactions on Internet Technology, Vol. X, No. Y, Article 67, Publication date: March 2016.

Mining and Quality Assessment of Mashup Model Patterns with the Crowd 67:19

Spearman’s correlation coefficients ρ
Criteria Mann-Whitney’s test Expert vs. Individual Expert vs. PairWise
Reusability p = 5.787× 10−9;U = 8029 -0.0783 0.1581
Novelty p = 3.287× 10−13;U = 8741 0.1212 -0.1017
Usefulness p = 6.392× 10−10;U = 8197 0.0257 0.1755
Understandability p = 5.744× 10−4;U = 6870 0.0732 0.1403

Table I. Comparison of ratings betweenExpert and Individual (H0 : ηind = ηexp), and Spearman’s
correlation coefficient ρ for Expert vs. Individual and Expert vs. PairWise.

the crowd produce comparable results. The alternative hypothesis is that the medians
are not equal, i.e., HA : ηind 6= ηexp. The results of the test reported in Table I make
us reject H0 for all four criteria and conclude that the ratings produced by Individual
and Expert are indeed significantly different. A further inspection of the ratings using
Spearman’s correlation (see the third column in Table I) shows that also the pair-wise
correlation (per same pattern) of the ratings by Individual and Expert is very low.

The data produced by the PairWise experiment are not directly comparable to the
one by the experts (votes vs. Likert scale rating). We can however rank patterns us-
ing the sum of the votes they obtained. Figure 10(b), for instance, plots the pattern
ranking for the understandability criterion (we compute similar rankings for all four
criteria). Now we can compute the pair-wise Spearman correlation between PairWise
and Expert (see the last column in Table I). The correlation is very low, and we cannot
conclude that the two experiments produce similar assessments for individual pat-
terns.

If we relax our similarity criteria and only look at the selectivity of the three exper-
iments (“good” vs. “bad” inside the ranked lists of patterns), we can compute the pre-
cision and recall of the two crowd experiments. Figure 11 shows the results obtained
when comparing the top 25th, 50th and 75th percentiles of the rankings. The results
obtained for the 25th percentile report a mediocre precision; Individual looks more
promising in terms of recall. As we relax the selectivity, the performance increases,
with PairWise outperforming Individual in the 75th percentile. Although these results
appear positive, we do not consider them reliable enough (too few data), e.g., Figure
10(b) shows that the 50th percentile includes 30 patterns out of 42 and the 75th even
39.

Spearman’s correl. coefficients ρ
Criteria Expert Individual PairWise
Reusability vs. Novelty -0.5452 0.8249 0.8862
Reusability vs. Usefulness 0.5682 0.8520 0.9053
Reusability vs. Understandability 0.6389 0.8319 0.9026
Novelty vs. Usefulness -0.2545 0.7971 0.9503
Novelty vs. Understandability -0.3356 0.8075 0.9485
Usefulness vs. Understandability 0.7978 0.8832 0.9969

Table II. In-group, cross-criteria Spearman’s correlations for the Expert,
Individual and PairWise quality assessments.

5.3.2. Reliability. Even if
the Individual experiment
produces assessments
that are different from
those by the experts, we
would expect ratings to
vary across criteria. Yet,
we already pointed out
that Individual produces
roughly the same ratings for all criteria. Using Friedman’s analysis of variance
and the null hypothesis that the medians of the ratings are instead the same for
all criteria, i.e., H0 : ηund = ηuse = ηreu = ηnov, we obtain a p-value of p = 0.4995
(df = 3, n = 42, χ2 = 2.368). The high p-value forces us to accept H0 and that the
ratings are the same for the different criteria. This conclusion is reinforced by a
further inspection using Spearman’s correlation (third column of Table II) that shows
high correlations (ρ) across criteria.

The design of the PairWise experiment makes sure that each pattern appears ex-
actly 3 times as the first pattern in the task (see Figure 16 in the appendix) and 3

ACM Transactions on Internet Technology, Vol. X, No. Y, Article 67, Publication date: March 2016.

67:20 C. Rodrı́guez, F. Daniel, and F. Casati

times as the second. We would thus expect that the votes by the crowd are uniformly
distributed over the pattern appearing first and second.

Criteria Wilcoxon signed rank test
Reusability p = 4.922× 10−7;W = 528

Novelty p = 8.844× 10−8;W = 666

Usefulness p = 9.910× 10−8;W = 666

Understandability p = 1.488× 10−7;W = 630

Table III. Test of preference bias between pat-
terns shown first vs. patterns shown second in the
PairWise assessment task.

We use the Wilcoxon signed rank test to
test this assumption, using the null hypoth-
esis that for each criteria the median of ag-
gregated votes is the same for the patterns
appearing first and those appearing second,
i.e.,H0 : η1st = η2nd. The alternative hypoth-
esis is that they are different (HA : η1st 6=
η2nd). The results are reported in Table III.
We can see thatH0 must be rejected for all criteria, i.e., we are in the presence of a bias.
Specifically, the crowd consistently preferred the first pattern over the second. We also
compute Spearman’s correlation for the PairWise experiment and report them in the
last column of Table II. The results again show high, positive cross-criteria correlation
coefficients, which contrasts the values obtained for Expert, not only in strength but
partly also in direction.

5.4. Discussion
At first sight, the conclusions of the mining study and those of the quality assessment
study seem to contradict each other. But this is not true: The mining tasks impose
strict requirements for valid patterns, which eliminate most of the noise (i.e., non-
valid patterns) from feedbacks. This is not possible in the quality assessment study
that asks for opinions (not artifacts) for which there are no clear acceptance criteria.
In this case, noise (i.e., the assessments produced by non-serious workers), stays in the
data and, as our study shows, prevails over the feedback by the more serious workers.

We note that the quality of the elicited patterns as perceived by the experts is not
extraordinary. Only the understandability is high compared to the other criteria. The
availability of pattern names, descriptions and tags (which automated algorithms are
not able to produce) surely contributed to this result. We ascribe this mostly to the
small size of the dataset: we cannot expect lots of revolutionary patterns out of 40
pipes (Appendix C discusses examples of good and bad patterns). Using feedback from
only two experts is however a limitation of the study, and we would like to involve
additional independent experts or users of Baya in our follow-up studies. It is however
also important to note that the perceived average quality of patterns does not yet
mean that patterns are not “good” in practice; eventually, this can only be ascertained
by using them for development. Also, we did not assess the quality of the automatically
mined patterns and are thus not able to say which approach produces better patterns
according to the adopted criteria.

The data collected through our experiments seem to indicate that the crowd works
on a least-effort basis. Their performance strongly depends on the task design. For
instance, in the Individual experiment workers consistently provide similar ratings
for different criteria. Our intuition is that, given the task design in Figure 15, it is
simply easier for workers to choose one column and then just click vertically through
all criteria. Similarly, in the PairWise experiment we believe that workers actually
inspected only the first pattern and essentially neglected the second one, very likely
because inspecting two patterns was considered too complex. Also the use of gold data
to assess workers as proposed by CrowdFlower does not solve the problem, and even if
there was some notion of acceptable or less acceptable opinions (e.g., a range), checking
ranges in Likert scales via gold data questions is not yet supported.

Regarding the alternatives to the crowd-based assessment of mashup patterns, we
identify two options: involving an expert (expensive) or asking the users of the pat-
terns to rate them (for free). This latter approach we started exploring in Baya [Roy

ACM Transactions on Internet Technology, Vol. X, No. Y, Article 67, Publication date: March 2016.

Mining and Quality Assessment of Mashup Model Patterns with the Crowd 67:21

Chowdhury et al. 2014], where we let users vote on patterns, eliminating the need for
an expert (we also plan to allow them to save and share own patterns). If an expert
is involved, the general question may be whether is it better to directly ask him to
identify high-quality patterns or whether to ask him to assess lower-quality patterns
by the crowd. An argument in favor of crowd pattern identification is that it likely pro-
duces a better variety of patterns than a single expert and that assessing many crowd
patterns will not cost more than producing few expert patterns. There is not a single
answer to this question and the answer depends on the actual use of the patterns.

6. THREATS TO VALIDITY
This section summarizes the threats that may impose limitations on our findings and
their generalization to other scenarios where patterns are mined with the crowd.

6.1. Task design
The crowdsourcing platform we use for our experiments (CrowdFlower) allows us to
perform the selection of workers through the use of gold data (to implement questions
whose answers are known and formalized a priori so that they can be checked automat-
ically). This means that worker selection and actual task are seamlessly integrated,
and workers are judged by the platform while they perform the task. The nature of
the task we crowdsource, however, led us to the integration of a pre-selection ques-
tionnaire with the actual task, since it would be very hard to choose a priori patterns
from a pipe to use as gold data. This is of course a threat to the worker selection phase
because once the worker figures out the right answers for the pre-selection question-
naire, he/she can use it over and over without the pressure of having to provide good
answers to the actual task as when gold data was used.

Our experience also shows that using hard questions can be too selective, and re-
peatedly trying possible answers will cause the platform to prematurely exclude work-
ers from the task. The identification of mashup model patterns in Pipes is clearly a
task that requires specific qualifications from workers that may not be easy to find in
crowdsourcing platforms like CrowdFlower. Indeed, the reports provided by the crowd-
sourcing platform show that only 8 workers out of 93 actually managed to pass the
control questions for the Naive algorithm, while for Random3 and ChooseN the num-
bers are 21/52 and 6/45, respectively; for the Individual assessment experiment, only
4 workers out of 152 passed our control questions, while for PairWise it was 4/41. One
potential threat of this is that the results we obtained may not be reproducible if we
do not have the same workers performing our tasks together in a same period of time.
The consequence of this is that we may not get the same performance or not get any
patterns at all. This issue needs to be explored further in future work, for example,
to understand how much the performance varies across different days of the week or
times of the day, as well as with different rewards. The challenge thus lies in finding
the trade-off between the difficulty of the questionnaire and the level of expertise of
workers, as well as in the post-processing of the patterns to verify their quality.

The actual design of our tasks is based on a best effort. We have internally thought
of and analyzed alternative designs based on text-based representation of the models,
abstractions based on graphs and form-based representations, but the alternative that
resulted most convincing is the use of screenshots of real pipes that allows workers to
click on individual components to build patterns. Using this representation, we pro-
pose our three task designs with different levels of complexity and information load to
understand what is acceptable for the crowd. The main issue here (which at the same
time was necessary for the comparison) is that in our experiments we pay the same re-
ward for task designs of different complexities. The poor performance of Random3 and
ChooseN may thus be explained partially by the low reward offered to workers for that

ACM Transactions on Internet Technology, Vol. X, No. Y, Article 67, Publication date: March 2016.

67:22 C. Rodrı́guez, F. Daniel, and F. Casati

level of task complexity. Raising the rewards might have produced results comparable
to Naive, but it would probably have made these algorithms even less cost-effective
than they are now. Our findings therefore assume a same reward policy.

The task design for the assessment of patterns asks for opinions, which are collected
through the mechanisms supported by the crowdsourcing platform: web forms. The
main issue in this case is that opinions using web forms are prone to cheating. The
challenges we face here are similar to those of the task design for collecting patterns:
it is not possible to create gold data for opinions, because a pattern that is good for one
worker may not be as good for another worker. Our findings show that such conditions
and the lack of support by the chosen crowdsourcing platform (and similar ones) for
more sophisticated mechanisms (e.g., an approach based on the games with a purpose
paradigm [Von Ahn 2006]) make the assessment of patterns as proposed in this article
produce results that are significantly different from what a dedicated domain expert
would produce.

6.2. Experimental setting
Crowdflower and other state-of-the-art crowdsourcing platforms depend on many con-
figuration parameters including reward, number of answers per task, number of tasks
per job, gold data, success rate (on gold data) for the cut-off threshold, target coun-
tries, target languages, the day/time when the tasks are launched, among other more
detailed parameters. In addition, Crowdflower also offers the possibility to post tasks
to third-party crowdsourcing platforms that, in turn, have their own configuration pa-
rameters that are set up internally by Crowdflower and that are obscure to the work
provider. This makes the experimental environment and setting complex and repre-
sents an important threat to the reproducibility of the experiment (as with all crowd-
sourcing experiments). In our studies, we make decisions on how to configure these
parameters based on a best effort, and we try to control them whenever this is possi-
ble. We acknowledge that the configuration used for each single parameter is debatable
and each one of these represent a research question that may deserve an investigation
on its own.

6.3. Results and findings
Our studies confirm that crowdsourcing tasks for marketplace platforms should be
kept simple and straightforward, in line with what has already been reported in con-
texts different from ours [Kittur et al. 2008; Mason and Watts 2010]. While at first
sight, some findings may thus not be seen as novel contributions, it is important to
interpret them properly in their specific context: pattern mining. The purpose of the
three different levels of complexity in our studies was, on the one hand, to answer the
typical question the data mining expert would come up with (e.g., “what if you showed
more models to the worker?”) and, on the other hand, to understand which level of
complexity is acceptable. So, the question this article aims to answer is not just if
complexity matters, but what level of complexity. And the answer to this question is
anything but trivial or obvious. Indeed, the results of our experiments show that there
is a noticeable difference in the performance of the crowd. Crowdsourcing is a complex
domain and each task has its own peculiarities and pitfalls; it is in general not possible
to apply results from other studies straightaway to tasks and task designs in different
contexts, which leads to the need for studies that explore the use of crowdsourcing in
different contexts and scenarios.

To the best of our knowledge, this is the first work investigating the specific prob-
lem of pattern mining from models with the crowd. As such, it is an exploratory study
that unveils where the problems are. And its contribution is exactly this: starting the
thread, showing some techniques that work as well as others that do not. Building on

ACM Transactions on Internet Technology, Vol. X, No. Y, Article 67, Publication date: March 2016.

Mining and Quality Assessment of Mashup Model Patterns with the Crowd 67:23

this, others (or we ourselves) can work on more targeted, task-specific improvements,
just as it happened with many similar task-specific studies in the domain of crowd-
sourcing (e.g., data labeling, multimedia quality assessment, among other studies).

7. RELATED WORK
In the area of databases, the current trend is to exploit crowdsourcing to help an-
swer queries that are hard for computers. For example, Parameswaran and Polyzotis
[2011] propose hQuery, a declarative language that allows for the description of query
answering tasks that involve human processors, databases and external algorithms.
Franklin et al. [2011] propose CrowdDB, an approach to answer database queries
through crowdsourcing. As opposed to the previous work, CrowdDB proposes a modi-
fied version of the standard SQL with annotations at the level of both data definition
language (DDL) and data manipulation language (DML) enabling the crowdsourcing
of database query answering. Marcus et al. [2011] propose Qurk, an on-paper system
managing the workflow of querying relational databases, including tasks like filtering,
aggregation, sorting and joining of data sources. The idea is rather simple: it proposes
to use standard SQL where the crowd tasks are wrapped into user-defined functions
(UDFs) that contain the concrete task description to be sent to the crowd.

Few works focus on the intersection of crowdsourcing with data mining and machine
learning. The current trend is to use the crowd mostly for pattern recognition, classi-
fication and labeling of data items that can be later on used as training examples for
machine learning algorithms. For example, Li et al. [2012] propose CrowdMine, an ap-
proach that leverages on human computation for solving problems in verification and
debugging. This work targets the involvement of non-experts in solving such problems,
and to do so, the authors propose to abstract the problem through a pattern identifica-
tion game that can be played by any individual of the crowd. In the context of data pre-
processing for machine learning, Sheng et al. [2008] propose a crowd-based approach
for collecting training labels for data items also from non-expert human labelers for
the use in supervised induction. In particular, the authors consider the repeated label-
ing for some or all the examples in the dataset and their impact on the quality level of
the training examples. In the same line, McCreadie et al. [2010] propose to leverage on
crowdsourcing to collect labels for a news dataset. The goal of the work is to produce
a reference dataset that can be used for the evaluation and comparison of approaches
proposed for news query classification. Von Ahn and Dabbish [2004] propose the ESP
game, an interactive system in the form of a game in which players must agree with
other players on the labels that can be associated to images in order to proceed in the
game. Labels can be used later on for improving image search or as training examples.

A common characteristic of the works presented in this section is that they all target
non-experts that are capable of performing relatively simple tasks. They leverage on
human-innate capabilities such as image identification, text interpretation and pat-
tern recognition. The main challenge of these works therefore is the translation of the
original task (e.g., image classification or database query answering) to task descrip-
tions and visual metaphors that are in the reach of these type of workers. Our approach
is slightly different and more similar to the one proposed by Stolee and Elbaum [2010],
in that we target workers that have a minimum knowledge of Yahoo! Pipes. Eliciting
from the crowd artifacts as complex as model patterns has not yet been studied before.

The quality of mashups and mashup patterns has been studied in the past few years.
Cappiello et al. [2012] study the composition of mashups by taking into account differ-
ent quality dimensions such as the syntactic and semantic compatibility of compo-
nents, aggregated quality of the mashup, and added value in terms of data, functions
and visualization. These quality dimensions are considered in the context of deliver-
ing recommendations for building mashups. Janner et al. [2009] present five different

ACM Transactions on Internet Technology, Vol. X, No. Y, Article 67, Publication date: March 2016.

67:24 C. Rodrı́guez, F. Daniel, and F. Casati

mashup patterns for enterprise mashups that enable cross-organizational collabora-
tion. The authors highlight the requirements imposed by enterprise mashups in terms
of security, availability, governance and quality, which need to be taken into account
by mashup patterns in the context of enterprises. Cappiello et al. [2010] address the
issue of information quality in mashups. Here, the authors argue that the quality of
mashups and mashup patterns strongly depends on the quality of the information
that different components can provide, and that other quality aspects such as main-
tainability, reliability and scalability play a minor role because mashups are used only
for short time. In our work, we are rather concerned with quality aspects such as the
functionality, reliability and (re-)usability of the mashup patterns as investigated by
Cappiello et al. [2011] or the composability, openness and encapsulation as defined by
Kohls [2011]. Kohls also discusses the intrinsic subjectivity and the difficulty of agree-
ing on patterns, two factors all pattern identification approaches have in common.

Whether the crowd can be used to assess the quality of model patterns has not yet
been investigated before – to the best of our knowledge. Several studies on how to use
the crowd to assess the quality of other kinds of artifacts, though, exist, with diver-
ging conclusions. Keimel et al. [2012], for instance, study the problem of assessing the
quality of videos with the crowd and conclude that the crow produces similar results
then traditional lab tests. Khattak and Salleb-Aouissi [2011] study the performance
of the crowd in labeling tasks; they conclude that “injecting a little expertise [expert-
provided labels] in the labeling process will significantly improve the accuracy of the
labeling task.” Instead, Gillick and Liu [2010] demonstrate that “non-expert judges
are not able to recover system rankings derived from experts” for more complex text
summarization assessments. These results are in line with our finding: the higher the
complexity of the task, the lower the reliability of the crowd assessment. In fact, the
first work asks workers only to provide a rank (mouse input), the second to write labels
(text input), and the third to read a longer text and two summaries and to rate them
(conceptual effort plus mouse input).

8. CONCLUSION
This article studies two research questions: The first question is whether the crowd is
able to discover reusable mashup model patterns from a dataset of 40 models using
micro-task designs that provide different levels of visibility into the available dataset
(1/3/10 models). The different levels of visibility aim to enable the crowd to spot repe-
titions of patterns in the dataset, similar to how automated algorithms proceed. The
finding is that the crowd is indeed able to identify patterns that are meaningful and
rich of domain knowledge (Naive), but also that more visibility into the dataset is ac-
tually counterproductive (Random3 and ChooseN) and that support is not needed if
humans are asked to identify patterns. The second question is whether it is possible
to crowdsource the quality assessment of identified patterns. The finding is that with
the two task designs we implemented, Individual and PairWise, we are not able to
reproduce assessments that are close to those given by experts. We cannot exclude
that other task designs produce better results; our results however show that further
experiments are needed to study how to simplify the task to make it more accessible,
how to incentivize workers, and how to check the skills of workers and the reliability
of opinions.

In our future work we would like to study how to further simplify our tasks, if
crowdsourcing can be leveraged also for big datasets, e.g., by introducing pattern
similarity metrics, or whether the quality of patterns changes if no reward is given
at all. A complementary technique to collect and rate patterns could be asking de-
velopers themselves to identify and rate patterns, e.g., directly inside their modeling
environment. We already implemented this idea in our pattern recommender for

ACM Transactions on Internet Technology, Vol. X, No. Y, Article 67, Publication date: March 2016.

Mining and Quality Assessment of Mashup Model Patterns with the Crowd 67:25

Yahoo! Pipes, Baya, which allows one to save patterns and to up-/down-vote patterns
(https://www.youtube.com/watch?v=AL0i4ONCUmQ). Collecting usage data will allow
us to understand if and where real users perform better than the crowd.

Acknowledgement. This research was supported by the project “Evaluation
and enhancement of social, economic and emotional wellbeing of older adults” under
the agreement no. 14.Z50.310029, Tomsk Polytechnic University (TPU).

REFERENCES
Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju. 2003. Web Services: Concepts, Architec-

tures, and Applications. Springer.
Marco Brambilla, Piero Fraternali, and et al. 2014. The Interaction Flow Modeling Language (IFML), version

1.0. OMG standard specification. Object Management Group, http://www.ifml.org.
Cinzia Cappiello, Florian Daniel, Agnes Koschmider, Maristella Matera, and Matteo Picozzi. 2011. A quality

model for mashups. In Web Engineering. Springer, 137–151.
Cinzia Cappiello, Florian Daniel, Maristella Matera, and Cesare Pautasso. 2010. Information quality in

mashups. Internet Computing, IEEE 14, 4 (2010), 14–22.
Cinzia Cappiello, Maristella Matera, Matteo Picozzi, Florian Daniel, and Adrian Fernandez. 2012. Quality-

aware mashup composition: issues, techniques and tools. In QUATIC 2012. IEEE, 10–19.
Michael Pierre Carlson, Anne H. Ngu, Rodion Podorozhny, and Liangzhao Zeng. 2008. Automatic Mash Up

of Composite Applications. In ICSOC’08. Springer, 317–330.
Huajun Chen, Bin Lu, Yuan Ni, Guotong Xie, Chunying Zhou, Jinhua Mi, and Zhaohui Wu. 2009. Mashup

by surfing a web of data APIs. VLDB 2009 2 (August 2009), 1602–1605. Issue 2.
Florian Daniel and Maristella Matera. 2014. Mashups: Concepts, Models and Architectures. Springer.
Ewa Deelman, Dennis Gannon, Matthew S. Shields, and Ian Taylor. 2009. Workflows and e-Science: An

overview of workflow system features and capabilities. Future Gen. Comp. Syst. 25, 5 (2009), 528–540.
Remco Dijkman, Marlon Dumas, Boudewijn Van Dongen, Reina Käärik, and Jan Mendling. 2011. Similarity

of business process models: Metrics and evaluation. Information Systems 36, 2 (2011), 498–516.
Hazem Elmeleegy, Anca Ivan, Rama Akkiraju, and Richard Goodwin. 2008. Mashup Advisor: A Recommen-

dation Tool for Mashup Development. In ICWS’08. IEEE Computer Society, 337–344.
Michael J Franklin, Donald Kossmann, Tim Kraska, Sukriti Ramesh, and Reynold Xin. 2011. CrowdDB:

answering queries with crowdsourcing. In SIGMOD. 61–72.
L. Geng and H.J. Hamilton. 2006. Interestingness measures for data mining: A survey. Comput. Surveys 38,

3 (2006), 9.
Dan Gillick and Yang Liu. 2010. Non-expert evaluation of summarization systems is risky. In NAACL HLT

2010 Workshop. Association for Computational Linguistics, 148–151.
Ohad Greenshpan, Tova Milo, and Neoklis Polyzotis. 2009. Autocompletion for mashups. VLDB’09 2 (August

2009), 538–549. Issue 1.
Jeff Howe. 2008. Crowdsourcing: Why the Power of the Crowd Is Driving the Future of Business (1 ed.).

Crown Publishing Group, New York, NY, USA.
Till Janner, Robert Siebeck, Christoph Schroth, and Volker Hoyer. 2009. Patterns for enterprise mashups in

b2b collaborations to foster lightweight composition and end user development. In ICWS 2009. 976–983.
Hyun Joon Jung and Matthew Lease. 2011. Improving Consensus Accuracy via Z-Score and Weighted Vot-

ing.. In Human Computation.
Christian Keimel, Julian Habigt, Clemens Horch, and Klaus Diepold. 2012. Qualitycrowd—a framework for

crowd-based quality evaluation. In Picture Coding Symposium (PCS), 2012. IEEE, 245–248.
Faiza Khan Khattak and Ansaf Salleb-Aouissi. 2011. Quality control of crowd labeling through expert eval-

uation. In 2nd NIPS Workshop on Computational Social Science and the Wisdom of Crowds.
Aniket Kittur, Ed H Chi, and Bongwon Suh. 2008. Crowdsourcing user studies with Mechanical Turk. In

Proceedings of the SIGCHI conference on human factors in computing systems. ACM, 453–456.
Christian Kohls. 2011. The Structure of Patterns: Part II - Qualities. In PLoP 2011. 27:1–27:18.
Wenchao Li, Sanjit A Seshia, and Somesh Jha. 2012. CrowdMine: towards crowdsourced human-assisted

verification. In DAC. IEEE, 1250–1251.
Adam Marcus, Eugene Wu, David R Karger, Samuel Madden, and Robert C Miller. 2011. Crowdsourced

databases: Query processing with people. In CIDR 2011. 211–214.

ACM Transactions on Internet Technology, Vol. X, No. Y, Article 67, Publication date: March 2016.

67:26 C. Rodrı́guez, F. Daniel, and F. Casati

Winter Mason and Duncan J Watts. 2010. Financial incentives and the performance of crowds. ACM SigKDD
Explorations Newsletter 11, 2 (2010), 100–108.

T. J. McCabe. 1976. A Complexity Measure. IEEE Transactions on Software Engineering SE-2, 4 (Dec 1976),
308–320.

Richard MC McCreadie, Craig Macdonald, and Iadh Ounis. 2010. Crowdsourcing a news query classification
dataset. In ACM SIGIR workshop, CSE 2010. 31–38.

OMG. 2011. Business Process Model and Notation (BPMN) version 2.0. http://www.bpmn.org. (2011).
OMG. 2014. Unified Modeling Language (UML). http://www.uml.org/. (2014).
Aditya Parameswaran and Neoklis Polyzotis. 2011. Answering queries using humans, algorithms and

databases. CIDR (2011), 160–166.
Anton V. Riabov, Eric Boillet, Mark D. Feblowitz, Zhen Liu, and Anand Ranganathan. 2008. Wishful search:

interactive composition of data mashups. In WWW’08. ACM, 775–784.
Carlos Rodrı́guez, Florian Daniel, and Fabio Casati. 2014a. Crowd-based mining of reusable process model

patterns. In BPM 2014. Springer, 51–66.
Carlos Rodrı́guez, Soudip Roy Chowdhury, Florian Daniel, Hamid R. Motahari Nezhad, and Fabio Casati.

2014b. Assisted Mashup Development: On the Discovery and Recommendation of Mashup Composition
Knowledge. In Web Services Foundations. 683–708.

Soudip Roy Chowdhury, Florian Daniel, and Fabio Casati. 2014. Recommendation and Weaving of Reusable
Mashup Model Patterns for Assisted Development. ACM Trans. Internet Techn. 14, 2-3 (2014), Art. 21.

Victor S Sheng, Foster Provost, and Panagiotis G Ipeirotis. 2008. Get another label? Improving data quality
and data mining using multiple, noisy labelers. In SIGKDD. ACM, 614–622.

Kathryn T Stolee and Sebastian Elbaum. 2010. Exploring the use of crowdsourcing to support empirical
studies in software engineering. In ESEM 2010. ACM, 35.

Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. 2005. Introduction to Data Mining. Addison-Wesley.
Stefano Tranquillini, Florian Daniel, Pavel Kucherbaev, and Fabio Casati. 2014. Modeling, Enacting and

Integrating Custom Crowdsourcing Processes. ACM Trans. Web 9, 2 (2014).
Luis Von Ahn. 2006. Games with a purpose. Computer 39, 6 (2006), 92–94.
Luis Von Ahn and Laura Dabbish. 2004. Labeling images with a computer game. In SIGCHI. ACM, 319–326.
Mathias Weske. 2007. Business Process Management: Concepts, Languages, Architectures. Springer.

ACM Transactions on Internet Technology, Vol. X, No. Y, Article 67, Publication date: March 2016.

Online Appendix to:
Mining and Quality Assessment of Mashup Model Patterns with the
Crowd: A Feasibility Study

CARLOS RODRÍGUEZ, University of Trento
FLORIAN DANIEL, Politecnico di Milano
FABIO CASATI, University of Trento

A. DESIGN OF TASK PAGES FOR PATTERN MINING
Figure 12 is a screen shot of the questionnaire used to assess workers’ knowledge of
Yahoo! Pipes and to decide which worker to reward. The same questionnaire is used
inside CrowdFlower to assess workers in each of the crowd task designs used in the
pattern mining and assessment experiments described in this article.

Figures 13 and 14 illustrate the screen shots of the Ramdom3 and ChooseN task
designs for pattern identification described in Section 4.1. Like the task design shown
in Figure 4, also these two design are implemented as external Web pages executed on
our own Web server and linked from within CrowdFlower.

We acknowledge one limitation pointed out by one reviewer regarding two questions
included in the task (“have you ever seen this pattern?” and “have you ever used this
pattern?”). For the scale we used for these questions (5 points Likert scale), it would
be more correct to rephrase these questions as “how often have you seen this pattern?”
and “how often have you used this pattern?”.

B. DESIGN OF TASK PAGES FOR QUALITY ASSESSMENT
Figure 15 illustrates the details of how we assessed the quality of identified mashup
model patterns. The form shows one model pattern and asks the user (both workers in
the crowd experiment and us in the expert assessment) to rate the pattern in terms of
understandability, usefulness, reusability and novelty.

Figure 16 explains the design of the pair-wise pattern quality assessment task. The
core idea is to provide the worker with two patterns and to ask him/her to choose which
pattern is better in terms of understandability, usefulness, reusability and novelty.

C. EXAMPLES OF MINED MODEL PATTERNS
Figure 17 discusses, for each of the four assessment criteria, examples of good and bad
patterns as identified by the crowd in the Naive pattern mining experiment.

c© 2016 ACM. 1533-5399/2016/03-ART67 $15.00
DOI: http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Internet Technology, Vol. X, No. Y, Article 67, Publication date: March 2016.

App–2 C. Rodrı́guez, F. Daniel, and F. Casati

Correct answer

Correct answer

Correct answer

Correct answer

Correct answer

Fig. 12. Screen shot of the questionnaire used to assess workers’ acquaintance with Yahoo! Pipes. The figure
also highlights the correct answer of each question.

ACM Transactions on Internet Technology, Vol. X, No. Y, Article 67, Publication date: March 2016.

Mining and Quality Assessment of Mashup Model Patterns with the Crowd App–3

Short description of task with
instructions for the worker

Main pipe of the task. Here workers can
select the components of the identified
pattern (if any).

Two randomly chosen pipes complementing
the main pipe of the task. Workers are asked
to compare the main pipe with these two to
identify similarities.

Input form asking for additional metadata.

Fig. 13. Screen shot of the Random3 task UI implemented for the identification of mashup model patterns
from a set of 3 different pipes models.

ACM Transactions on Internet Technology, Vol. X, No. Y, Article 67, Publication date: March 2016.

App–4 C. Rodrı́guez, F. Daniel, and F. Casati

Short description of task with
instructions for the worker

The worker can select n pipes from 10 randomly
chosen pipes. By clicking on the tabs, the worker
can open (select) and close (unselect) pipes.

The two pipes chosen by the worker.

Leads the worker to the actual pattern
identification page (similar to the one of the
Random3 task design).

Fig. 14. Screen shot of the ChooseN task UI implemented for the identification of mashup model patterns
from a set of 3 different pipes models freely chosen out of 10 available models.

ACM Transactions on Internet Technology, Vol. X, No. Y, Article 67, Publication date: March 2016.

Mining and Quality Assessment of Mashup Model Patterns with the Crowd App–5

Title and
explanation
of task

Gold questions
for worker
assessment

Additional
questions
about pattern
metadata

Fig. 15. Screen shot of the task implemented for the assessment of pattern quality. Both the experts and
the crowd in the Individual setting use the same task design to perform their evaluation.

ACM Transactions on Internet Technology, Vol. X, No. Y, Article 67, Publication date: March 2016.

App–6 C. Rodrı́guez, F. Daniel, and F. Casati

Task title and description

The two patterns to compare

Options to choose best pattern
regarding understandability, usefulness,
reusability and novelty

Additional metadata questions

Gold questions for worker assessment

Fig. 16. Screen shot of the task UI implemented for the pair-wise comparison and ranking of identified
model patterns.

ACM Transactions on Internet Technology, Vol. X, No. Y, Article 67, Publication date: March 2016.

Mining and Quality Assessment of Mashup Model Patterns with the Crowd App–7

Good example Bad example

R
eu

sa
bi

lit
y

N
ov

el
ty

U
se

fu
ln

es
s

U
nd

er
st

an
da

bi
lit

y

For this criteria, the good example shown on the left performs a simple but concrete function, while the
bad example on the right seems to perform many functionalities that, as a whole, may be hard to reuse
into a different pipe to address a particular problem.

The pattern on the left presents a solution that combines modules in a rather novel and interesting way.
The pattern on the right, however, use a combination of modules that is quite trivial and that does not
provide any new insights or knowledge on how to combine modules to provide a solution.

The good example shows a pattern that seems useful because it allows the user to address a common
need: provide authentication to access a web resource (feeds in this case). The bad example shows a
combination of components that can be hardly useful in a different context of this particular pipe.

The pattern on the left shows a very simple pattern made of only two components. The functionality is
simple and straightforward to understand. The pattern on the right, however, contains many modules that
are combined and embedded in a rather intricated manner, which in a way harms its understandability.

Fig. 17. Examples of mashup model patterns discovered by the crowd.

ACM Transactions on Internet Technology, Vol. X, No. Y, Article 67, Publication date: March 2016.

